بررسی امکان افزایش درجه اکسایش پیش ماده های پایه فلزی و پایه کربنی با استفاده از فناوری پلاسما

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه صنایع گاز، دانشکده مهندسی شیمی، دانشگاه سمنان، سمنان، ایران

چکیده

روش تخلیۀ بار سد دی‌الکتریک (DBD) یکی از روش­های جدید تولید پلاسماست که با استفاده از آن می­توان به افزایش درجۀ اکسایش پیش‌ماده­های مختلف اقدام شود. در این پژوهش به امکان­سنجی استفاده از این روش برای افزایش درجۀ اکسایش پیش‌ماده‌های پایه‌کربنی (اکسیدگرافن و نانولوله­های کربنی) و پایه‌فلزی (نانومگنتیت و نانو‌آلومینا) اقدام شد. بدین منظور این نانوذرات قبل و بعد از انجام عملیات مذکور با روش‌های میکروسکوپ الکترونی روبشی گسیل میدان (FESEM)، طیف‌سنجی پراش انرژی پرتو ایکس (EDS)، تبدیل فوریه پرتو مادون قرمز (FT-IR) و طیف‌سنجی فرابنفش- مرئی (UV-Vis) شناسایی شدند و تغییرات درجۀ اکسایش آن‌هاارزیابی شد. هم‌چنین برای بررسی پایداری نانوذرات در محیط آبی از آزمون پتانسیل زتا استفاده شد. نتایج این پژوهش نشان داد که پس از اعمال فرایند پلاسما درصد وزنی عنصر اکسیژن در نانوذرات اکسیدگرافن و نانولوله‌های کربنی به‌ترتیب حدود 59% و 33% افزایش یافت. این در حالی است که این روش در افزایش درجۀ اکسایش نانواکسیدهای فلزی تأثیر قابل توجهی نداشت. در واقع بسته به نوع رادیکال­های اکسیژن تولیدی در فضای پلاسما گروه­های مختلفی مانند کربوکسیلیک اسید، هیدروکسیل، لاکتون و لاکتول بر روی
سطح مواد پایه‌کربنی ایجاد شده است که این گروه­ها درجۀ اکسایش این مواد را افزایش داده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Investigation on the Probability of Enhance Oxidation State of Metal-Based and Carbon-Based Precursors by Using Plasma Technology

نویسندگان [English]

  • M. Tabarsa
  • B. Zarenezhad
Semnan University
چکیده [English]

Dielectric barrier discharge technique (DBD) is a new methods for plasma formation which can be used to enhance the oxidation state of different materials. In this study, the probability of enhancing the oxidation state of carbon-based (graphene oxide and multi-walled carbon nanotube) and metal-based (nano-magnetite and nano-alumina) precursors was investigated. In this way, the oxidation state of the materials was evaluated by field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and ultraviolet-visible spectroscopy (UV-Vis) before and after the plasma process. In addition the dispersity of the nanoparticles in an aqueous solution was investigated by zeta potential method. The obtained results revealed that after the plasma processing, the weight percentage of oxygen element increased about 59% and 33% for graphene oxide and carbon nanotube samples, respectively. However, the metal-based materials were not affected by the plasma process. Indeed, depending on the type of produced oxygen radicals in the plasma space, different groups such as carboxylic acid, hydroxyl, lactone, and lactol groups can be formed on the surface of the carbon-based materials which led to the increasing of the oxidation state of the nanoparticles.

کلیدواژه‌ها [English]

  • Dielectric Barrier Discharge
  • DBD
  • Graphene Oxide
  • Carbon Nanotube
  • Nanomagnetite
  • Nanoalumina

 

[1]        Dombrowski, P. M., Kakarla, P., Caldicott, W., Chin, Y., Sadeghi, V., Bogdan, D., Barajas-Rodriguez, F., Chiang, S. Y. D., "Technology review and evaluation of different chemical oxidation conditions on treatability of PFAS", Remediation Journal, 28, pp. 135–150, (2018).
[2]        Wacławek, S., Silvestri, D., Hrabák, P., Padil, V. V. T., Torres-Mendieta, R., Wacławek, M., Černík, M., Dionysiou, D. D., "Chemical oxidation and reduction of hexachlorocyclohexanes", A review Water Research, 162, pp. 302–319, (2019).
[3]        Taylor, S., Zhang, J. F., Eccleston, W., "A review of the plasma oxidation of silicon and its applications", Semiconductor Science and Technology, 8, pp. 1426–1433, (1993).
[4]        Wang, J. J., Choi, K. S., Feng, L. H., Jukes, T. N., Whalley, R. D., "Recent developments in DBD plasma flow control", Progress in Aerospace Sciences, 62, pp. 52–78, (2013).
[5]        Kong, M. G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., Van Dijk, J., Zimmermann, J. L., "Plasma medicine: an introductory review", New Journal of Physics, 11, pp. 105-112 (2009)
[6]        Gui-Min, X., Yue, M., Guan-Jun, Z., "DBD Plasma Jet in Atmospheric", Pressure Argon IEEE Transactions on Plasma Science, 36, pp. 1352–1353, (2008).
[7]        Klages, C. P., Höpfner, K., Kläke, A., "Surface Functionalization at Atmospheric Pressure by DBD-Based Pulsed Plasma Polymerization", Plasmas and Polymers, 5, pp. 79–89, (2000).
[8]        Kuchenbecker, M., Bibinov, N., Kaemlimg, A., Wandke, D., Awakowicz, P., Viöl, W., "Characterization of DBD plasma source for biomedical applications", Journal of Physics D: Applied Physics, 42, pp. 412-452, (2009).
[9]        Li, J., Xiang, Q., Liu, X., Ding, T., Zhang, X., Zhai, Y., Bai, Y., "Inactivation of soybean trypsin inhibitor by dielectric-barrier discharge (DBD) plasma", Food Chemistry, 232, pp. 515–522, (2017).
[10]      Neretti, G., Taglioli, M., Borghi, C. A., "Experimental determination and numerical evaluation under simplifying assumptions of the ozone concentration in an atmospheric-pressure air DBD plasma", The European Physical Journal D, 72, pp. 113-120, (2018).
[11]      Liang, W. J., Fang, H. P., Li, J., Zheng, F., Li, J. X., Jin, Y. Q., "Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide" Journal of Electrostatics, 69, pp. 206–213, (2011).
[12]      Liao, X., Liu, D., Xiang, Q., Ahn, J., Chen, S., Ye, X., Ding, T., "Inactivation mechanisms of non-thermal plasma on microbes: A review", Food Control, 75, pp. 83–91, (2017).
[13]      Shang, K., Li, J., Morent, R., "Hybrid electric discharge plasma technologies for water decontamination: a short review", Plasma Science and Technology, 21, pp. 403-420, (2019).
[14]      Zainuddin, F. A., Md Daud, N., "A Review on Dielectric Barrier Discharge (DBD) Plasma Actuator in Aeronautics Applications", Journal of Advanced Research in Fluid 48, pp. 125–132, (2018).
[15]      Amri, D., Nawawi, Z., Jambak, M. I., "The Comparison between types of electrodes in Dielectric Barrier Discharge (DBD) plasma for obtaining potable water: a review", IOP Conference Series: Materials Science and Engineering, 620, pp. 219-221, (2019).
[16]      Borcia, G., Anderson, C. A., Brown, N. M. D., "The surface oxidation of selected polymers using an atmospheric pressure air dielectric barrier discharge", Part I Applied Surface Science, 221, pp. 203–214, (2004).
[17]      Ren, C. S., Wang, K., Nie, Q. Y., Wang, D. Z., Guo, S. H., "Surface modification of PE film by DBD plasma in air", Applied Surface Science, 255, pp. 3421–3425, (2008).
[18]      Louis, R., "Effects of surface morphology and treatment of iron oxide nanoparticles on the mechanical properties of an epoxy coating", Progress in Organic Coatings, 48, pp 123-132, (2015).
[19]      Shahmoradi, A. R., Talebibahmanbigloo, N., Javidparvar, A. A., Bahlakeh, G., Ramezanzadeh, B., "Studying the adsorption/inhibition impact of the cellulose and lignin compounds extracted from agricultural waste on the mild steel corrosion in HCl solution", Journal of Molecular Liquids, 304, pp. 112-132, (2020).
[20]      Yu, Y. H., Lin, Y. Y., Lin, C. H., Chan, C. C., Huang, Y. C., "High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties" Polymer Chemistry, 5, pp. 535–550, (2014).
[21]      Chen, L., Lu, S., Wu, S., Zhou, J., Wang, X., "Removal of radiocobalt from aqueous solutions using titanate/graphene oxide composites", Journal of Molecular Liquids, 209, pp. 397–403. (2015).
[22]      Fan, L., Luo, C., Sun, M., Li, X., Lu, F., Qiu, H., "Preparation of novel magnetic chitosan/graphene oxide composite as effective adsorbents toward methylene blue", Bioresource Technology, 114, pp. 703–706, (2012).
[23]      Harfouche, N., Gospodinova, N., Nessark, B., Perrin, F. X., "Electrodeposition of composite films of reduced graphene oxide/polyaniline in neutral aqueous solution on inert and oxidizable metal" Journal of Electroanalytical Chemistry, 786, pp. 135–144, (2017).
[24]      Jung, M. R., Horgen, F. D., Orski, S. V., Rodriguez, C. V., Beers, K. L., Balazs, G. H., Jones, T. T., Work, T. M., Brignac, K. C., Royer, S. J., Hyrenbach, K. D., Jensen, B. A., Lynch, J. M., "Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms", Marine Pollution Bulletin, 127, pp. 704–716, (2018).
[25]      Hajipour, F., Asad, S., Amoozegar, M. A., Javidparvar, A. A., Tang, J., Zhong, H., Khajeh, K., "Developing a Fluorescent Hybrid Nanobiosensor Based on Quantum Dots and Azoreductase Enzyme for Methyl Red Monitoring", Iranian Biomedical Journal, 111, pp 12-21, (2020).
[26]      Rahman, M. M., Khan, S. B., Jamal, A., Faisal, M., Aisiri, A. M., "Iron Oxide Nanoparticles", Nanomaterials, 3, pp. 43–67, (2011).
[27]      Atta, A., Al-Lohedan, H., Al-Hussain, S., "Synthesis of Stabilized Myrrh-Capped Hydrocolloidal Magnetite", Nanoparticles Molecules, 19, pp. 11263–11278, (2014).
[28]      Toledo, R. R., Santoyo, V. R., Moncada, D., Martínez, M., "Effect of aluminum precursor on physicochemical properties of Al 2O3 by hydrolysis / precipitation method Efecto del precursor de aluminio en las propiedades fisicoquímicas de la γ- Al2O3 por el método hidrólisis", precipitación, 10, pp. 83–99 (2018).
[29]      Dehghani, A., Bahlakeh, G., Ramezanzadeh, B., "A detailed electrochemical/theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution", Journal of Molecular Liquids, 282, pp. 366-384, (2019).
[30]      Zhai, Y., Zhai, J., Wang, Y., Guo, S., Ren, W., Dong, S., "Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering", Journal of Physical Chemistry C, 113, pp. 7009–7014, (2009).
[31]      Ding, G., Xie, S., Zhu, Y., Liu, Y., Wang, L., Xu, F., "Graphene oxide wrapped Fe3O4@Au nanohybrid as SERS substrate for aromatic dye detection Sensors and Actuators", B: Chemical, 221, pp. 1084–1093, (2015).
[32]      Gangwar, J., Gupta, B. K., Tripathi, S. K., Srivastava, A. K., "Phase dependent thermal and spectroscopic responses of Al2O3 nanostructures with different morphogenesis", Nanoscale, 7, pp. 13313–13344, (2015).
[33]      Bhattacharjee S., "DLS and zeta potential – What they are and what they are not?", Journal of Controlled Release, 235: pp. 337–351, (2016).
[34]      Honary S., Zahir F., "Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 1)", Tropical Journal of Pharmaceutical Research, 12: pp. 255–264, (2013).
[35]      Bem, D. S., Lampe-Önnerud, C. M., Olsen, H. P., Zur Loye, H. C.: Synthesis and Structure of Two New Ternary Nitrides: FeWN2 and MnMoN2 Inorganic Chemistry, 35, pp. 581–585, (1996).
[36]      Ziletti, A., Carvalho, A., Campbell, D. K., Coker, D. F., Castro Neto, A. H., "Oxygen Defects in Phosphorene", Physical Review Letters, 114, pp. 485-498, (2015).
[37]      Glockler, G., "Heats of Dissociation of the N2 Molecule and the NH Radical The", Journal of Chemical Physics, 16, pp. 602–604, (1948).
[38] Van Laer, K., Bogaerts, A., "Influence of Gap Size and Dielectric Constant of the Packing Material on the Plasma Behaviour in a Packed Bed DBD Reactor A Fluid Modelling Study", Plasma Processes and Polymers, 14, pp. 160-179, (2017).