بهبود فعالیت فتوکاتالیستی نانوذرات اکسید روی به کمک منگنز در تخریب رنگزای آبی مستقیم 71

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیمی، واحدبروجرد، دانشگاه آزاد اسلامی، بروجرد، ایران

2 گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه زنجان، زنجان، ایران

چکیده

در مقالۀ حاضر، نانوذرات اکسید روی (ZnO) و اکسید روی دوپه شده با منگنز (Mn-ZnO) به روش سل- ژل سنتز شدند. برای شناسایی نانوذرات سنتز‌شده از روش‌های پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM) و طیف‌سنجی پراش انرژی پرتو ایکس (EDX) استفاده شد. نتایج حاصل از تجزیۀ  XRDنشان داد که منگنز در ساختار اکسید روی دوپه شده است. تصاویر حاصل از SEM، سنتز فتوکاتالیست­های ZnO و Mn-ZnO را در ابعاد نانومتری تأیید کرد. فعالیت فتوکاتالیستی نانوذرات سنتز‌شده ZnO  و Mn-ZnO برای حذف رنگزای آبی مستقیم 71 زیر تابش نور فرابنفش بررسی شد. میزان تخریب رنگزای آبی مستقیم 71 به کمک فتوکاتالیست‌های ZnO و Mn-ZnO با میزان بارگذاری g/L 1/5 بعد از 90 دقیقه تابش نور به‌ترتیب برابر با 82 و 97 درصد به دست آمد. سازوکاری برای عملکرد نانو ذرات Mn-ZnO و نقش منگنز در افزایش فعالیت فتوکاتالیستی اکسید روی ارائه شد. بررسی‌ها نشان دادند که جنبش‌شناسی تخریب فتوکاتالیستی رنگزای آبی مستقیم 71 از واکنش شبه درجۀ یک پیروی می ­کند. نانوفتوکاتالیست  Mn-ZnO پایداری مناسبی برای بازیابی و استفادۀ مجدد از خود نشان دادند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Improvement of Photocatalytic Activity of ZnO Nanoparticles by Mn Doping in BD71 Degradation

چکیده [English]

In the present paper, ZnO and manganese doped ZnO (Mn-ZnO) nanoparticles were synthesized via sol-gel method. The prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). XRD results exhibited that Mn was successfully doped in the ZnO structure. SEM images confirmed that the particle size of ZnO and Mn-ZnO samples were in the nanometer ranges. Photocatalytic activity of ZnO and Mn-ZnO nanoparticles on the degradation of direct blue 71 (DB71) under UV light irradiation was investigated. DB71 degradation reached to 82% and 97% after 90 min irradiation using ZnO and Mn-ZnO photocatalysts, respectively. A mechanism for the behavior of the
Mn-ZnO nanoparticles and the role of Mn in the enhancement of ZnO photocatalytic activity was proposed. The kinetic studies revealed that the photocatalytic degradation kinetics of DB71 would follow a pseudo first order reaction. Mn-ZnO nanophotocatalyst exhibited appropriate stability for several reuses.

کلیدواژه‌ها [English]

  • Zinc oxide
  • Mn-ZnO Nanoparticles
  • Photocatalytic degradation
  • DB71

 

[1]        Donkadokula, N. Y., Kola, A. K., Naz, I,. Saroj, D., "A review on advanced physico-chemical and biological textile dye wastewater treatment techniques". Reviews in environmental science and bio/technology, 19, pp. 543-560, (2020).
[2]        Shoukat, R., Khan, S. J., Jamal, Y., "Hybrid anaerobic-aerobic biological treatment for real textile wastewater". Journal of Water Process Engineering, 29, p. 100804, (2019).
[3]        Hube, S., Eskafi M., Hrafnkelsdóttir K. F., Bjarnadóttir B., Bjarnadóttir M. Á., Axelsdóttir S., Wu B., "Direct membrane filtration for wastewater treatment and resource recovery: A review". Science of The Total Environment, 710, p. 136375, (2020).
[4]        Al-Mamun, M., Kader, S., Islam, M., Khan M., "Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: a review". Journal of Environmental Chemical Engineering, 7, p. 103248, (2019).
[5]        Ani, I., Akpan, U., Olutoye, M., Hameed, B., "Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2-and ZnO-based photocatalysts: recent development". Journal of Cleaner Production, 205, pp. 930-954, (2018).
[6]        Lee, K. M., Lai, C. W., Ngai, K. S., Juan, J. C., "Recent developments of zinc oxide based photocatalyst in water treatment technology: a review". Water research, 88, pp. 428-448, (2016).
[7]        Sathishkumar, P., Pugazhenthiran, N., Mangalaraja, R. V., Asiri, A. M., Anandan, S., "ZnO supported CoFe2O4 nanophotocatalysts for the mineralization of Direct Blue 71 in aqueous environments". Journal of Hazardous Materials, 252, pp. 171-179, (2013).
[8]        Lee, S. Y., Park, S. J., "TiO2 photocatalyst for water treatment applications". Journal of Industrial and Engineering Chemistry, 19, pp. 1761-1769, (2013).
[9]        Tan, T. L., Lai, C. W., Abd Hamid, S. B., "Tunable band gap energy of Mn-doped ZnO nanoparticles using the coprecipitation technique". Journal of Nanomaterials, 2014, pp. 1-6, (2014).
[10]      Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S. Y., Lin, H., Wang, G., "Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT studies". Ceramics International, 46, pp. 1494-1502, (2020).
[11]      Singh, J., Rathi, A., Rawat, M., Kumar, V., Kim, K. H., "The effect of manganese doping on structural, optical, and photocatalytic activity of zinc oxide nanoparticles". Composites Part B: Engineering, 166, pp. 361-370 (2019).
[12]      Onkani, S. P., Diagboya, P. N., Mtunzi, F. M., Klink, M. J., Olu-Owolabi, B. I., Pakade, V., "Comparative study of the photocatalytic degradation of
2–chlorophenol under UV irradiation using pristine and Ag-doped species of TiO2, ZnO and ZnS photocatalysts". Journal of Environmental Management, 260, p. 110145, (2020).
[13]      Raskar, N. D., Dake, D. V., Mane, V. A., Stathatos, E., Deshpande, U., Dole, B., "One step synthesis of vertically grown Mn-doped ZnO nanorods for photocatalytic application". Journal of Materials Science: Materials in Electronics, 30,
pp. 10886-10899, (2019).
[14]      Saleh, R., Djaja, N. F., "Transition-metal-doped ZnO nanoparticles: synthesis, characterization and photocatalytic activity under UV light". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 130, pp. 581-590, (2014).
 
 
[15]      Habibi, M. H., Askari, E., "The effect of operational parameters on the photocatalytic degradation of CI reactive yellow 86 textile dye using manganese zinc oxide nanocomposite thin films". Journal of Advanced Oxidation Technologies, 14, pp. 190-195, (2011).
[16]      Habibi, M. H., Askari, E., "Synthesis of nanocrystalline zinc manganese oxide by thermal decomposition of new dinuclear manganese (III) precursors". Journal of thermal analysis and calorimetry, 111, pp. 1345-1349 (2013).
[17]      Habibi, M. H., Askari, E., "Photocatalytic degradation of an azo textile dye with manganese-doped ZnO nanoparticles coated on glass". Iranian Journal of Catalysis, 1, pp. 41-44, (2011).
[18]      Chakraborty, J., "Fundamentals and practices in colouration of textiles". CRC Press, (2015).
[19]      Saien, J., Soleymani, A., "Degradation and mineralization of Direct Blue 71 in a circulating upflow reactor by UV/TiO2 process and employing a new method in kinetic study". Journal of Hazardous Materials, 144, pp. 506-512, (2007).
[20]      Khan, M. M., Kumar, S., Alhazaa, A. N., Al-Gawati, M., "Modifications in structural, morphological, optical and photocatalytic properties of ZnO: Mn nanoparticles by sol-gel protocol". Materials Science in Semiconductor Processing, 87, pp. 134-141 (2018).
[21]      Sundaram, P. S., Inbanathan, S. S. R., Arivazhagan, G., "Structural and optical properties of Mn doped ZnO nanoparticles prepared by co-precipitation method". Physica B: Condensed Matter, 574,
p. 411668, (2019).
[22]      Chen, X., Wu, Z., Liu, D., Gao, Z., "Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes". Nanoscale research letters, 12, p. 143 (2017).
[23]      Ebrahimi, R., Hossienzadeh, K., Maleki, A., Ghanbari, R., Rezaee, R., Safari, M., Shahmoradi, B., Daraei, H., Jafari, A., Yetilmezsoy, K., "Effects of doping zinc oxide nanoparticles with transition metals (Ag, Cu, Mn) on photocatalytic degradation of Direct Blue 15 dye under UV and visible light irradiation". Journal of Environmental Health Science and Engineering, 17, pp. 479-492, (2019).
 
[24]      Baylan, E., Yildirim, O. A., "Highly efficient photocatalytic activity of stable manganese-doped zinc oxide (Mn: ZnO) nanofibers via electrospinning method". Materials Science in Semiconductor Processing, 103, p. 104621 (2019).
[25]      Hanh, N. T., Van Thuan, D., Khai, N. M., Thuy, P. T., Hang, T. T. M., Vy, N. H. T., Van Noi, N., Tran, D. T., Pham, T. D., Truc, N. T. T., "Synthesis of Co3O4 coated on N, S doped TiO2 for novel photocatalytic degradation of toxic organic pollutant in aqueous environment". Ceramics International, 46, pp. 21610-21616, (2020).
[26]      Moradi, M., Ghanbari, F., Manshouri, M., Angali, K. A., "Photocatalytic degradation of azo dye using nano-ZrO2/UV/Persulfate: Response surface modeling and optimization". Korean Journal of Chemical Engineering, 33, pp. 539-546, (2016).
[27]      Ertugay, N., Acar, F. N., "The degradation of Direct Blue 71 by sono, photo and sonophotocatalytic oxidation in the presence of ZnO nanocatalyst". Applied Surface Science, 318, pp. 121-126, (2014).
[28]      Konstantinou, I. K., Albanis, T. A., "TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review". Applied Catalysis B: Environmental, 49,
pp. 1-14, (2004).
[29]      Gümüş, D., Akbal, F., "Photocatalytic degradation of textile dye and wastewater". Water, Air, & Soil Pollution, 216, pp. 117-124, (2011).
[30] Jyothi, N. S., Ravichandran, K., "Optimum pH for effective dye degradation: Mo, Mn, Co and Cu doped ZnO photocatalysts in thin film form". Ceramics International, 46, pp. 23289-23292, (2020).