بهینه سازی فرآیندتولید سوخت بیودیزل از روغن بازیافت سرخ کردنی در حضور کاتالیست پلی اکسومتالات به روش الکترولیز بر مبنای سطح پاسخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری شیمی کاربردی،گروه شیمی، واحد علوم تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

2 استادیار فرآیندهای جداسازی و فراوری مواد، دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشیار شیمی تجزیه، گروه شیمی، واحد علوم تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

4 گروه شیمی کاربردی، دانشکده شیمی ، واحد تهران شمال، دانشگاه ازاد اسلامی

5 استاد دانشکده مهندسی شیمی و نفت، دانشگاه صنعتی شریف، تهران، ایران

چکیده

امروزه با توجه به انتشارگازهای سمی و گلخانه­ای حاصل از احتراق سوخت­های فسیلی، دانشمندان به دنبال سوخت­های تجدیدپذیر و سازگار با محیط­زیست هستند. بیودیزل نوعی سوخت سبز است و این ویژگی­ها را دارد. در این مطالعه، فرایند تولید بیودیزل با استفاده از روغن بازیافت سرخ‌کردنی و کاتالیست اسیدی فسفومولیبدیک اسید (H3PMo12O40) انجام شد. به‌منظور بهینه‌سازی واکنش استریفیکاسیون از روش سطح پاسخ بر پایۀ طراحی مرکب (RSM-CCD)استفاده شد. اثر سه مؤلفۀ‌ مستقل درصد وزنی کاتالیست (wt%)، نسبت مولی الکل به روغن و زمان (h) بر روی بازده بیودیزل بررسی و تمامی مراحل آزمایش در ولتاژ ثابت الکتریکی V 10 و دمای اتاق انجام شد. بالاترین بازده بیودیزل در حضور wt% 58/3 کاتالیست هموژن اسیدی فسفومولیبدیک اسید، نسبت مولی الکل به روغن 1: 84/7 و مدت زمان 24/8 ساعت برابر با 74/94% بود. خواص فیزیکی و شیمیایی بیودیزل تولید شده مطابق با استاندارد ASTMاست. مقدار 9933/0=R2  نشان می­دهد که مدل پیش­بینی شده دارای دقت و صحت کافی برای تخمین مؤلفه‌های شرکت‌کننده در واکنش است. همچنین، فعالیت بالای کاتالیست فسفومولیبدیک اسید آن را گزینۀ مناسبی برای تولید بیودیزل در مقیاس صنعتی کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of Biodiesel Production from Waste Cooking Oil in Present of Polyoxometalate as Catalyst Via Electrolysis Method Based on Response Surface Methodology (RSM)

نویسندگان [English]

  • M. Helmi 1
  • A. Hemmati 2
  • P. Aberoomand Azar 3
  • K. Tahvildari 4
  • A. Safekordi 5
1 Science and Research Branch, Islamic Azad University
2 Iran University of Science and Technology
3 Science and Research Branch, Islamic Azad University
4 North Tehran Branch, Islamic Azad University
5 Sharif University of Technology
چکیده [English]

Today, due to emission of toxic and green gases from the combustion of fossil fuel, science look for renewable and eco-friendly fuels that biodiesel is kind of green fuel and has all properties. In these study, the biodiesel produced from waste cooking oil using phophomolybdic acid (H3PMo12O40). In order to optimize esterification reaction via electrolysis method response surface methodology based on central composite (RSM-CCD) was used. The effect of three main factors of catalyst weight (wt%), methanol to oil molar ratio and time (h) was investigated and all experimental runs were performed at constant electric voltage (10 V) and room temperature. The highest biodiesel yield in the present of 3.58 wt% catalyst, 7.84:1 at 8.24 h were 94.42%. the produced biodiesel in accordance with the ASTM standard. A value of R2=0.9933 indicates that the predicted model sufficient accuracy to estimate the parameters participating in the reaction. Also, the high activity of phosphomolybdic acid catalyst has made it a suitable option for biodiesel production on an industrial scale.

کلیدواژه‌ها [English]

  • Biodiesel
  • Phosphomolybdic Acid
  • Electrolysis Method
  • Response Surface Methodology (RSM)

 

[1]        Marwaha, A., Rosha, P., Mohapatra, S. K., Mahla, S. K., Dhir, A., "Biodiesel production from Terminalia bellerica using eggshell-based green catalyst: An optimization study with response surface methodology", Energy Reports, 5: pp. 1580-8, (2019).
[2]        Wang Y. -T, Yang X. -X, Xu, J., Wang, H. -L., Wang, Z. -B., Zhang, L., "esterification of oleic acid by a sulfonated magnetic solid acid catalyst", Renewable Energy 139: pp. 688-95, (2019).
[3]        Dahdah, E., Estephane, J., Haydar, R., Youssef, Y., El Khoury, B., Gennequin, C., "Biodiesel production from refined sunflower oil over Ca–Mg–Al catalysts: Effect of the composition and the thermal treatment", Renewable Energy, 146: pp. 1242-8, (2020).
[4]        Li, T. -F., Wang, X. -Q., Jiao, J., Liu, J. -Z., Zhang, H. -X., Niu, L. -L., "Catalytic transesterification of Pistacia chinensis seed oil using HPW immobilized on magnetic composite graphene oxide/cellulose microspheres", Renewable Energy, 127: pp. 1017-25, (2018).
[5]        Guo, J., Sun, S., Liu, J., "Conversion of waste frying palm oil into biodiesel using free lipase A from Candida antarctica as a novel catalyst", Fuel, 267:
pp. 117323, (2020).
[6]        Granjo, J. F. O., Duarte, B. P. M., Oliveira, N. M. C., "Integrated production of biodiesel in a soybean biorefinery: Modeling, simulation and economical assessment", Energy, 129: pp. 273-91, (2017).
 
[7]        Lefebvre, F., "Synthesis, characterization and applications in catalysis of polyoxometalate/zeolite composites", Inorganics, 4(2): pp. 13, (2016).
[8]        Mizuno, N., Kamata, K., Yamaguchi, K.,
"Liquid-phase selective oxidation by multimetallic active sites of polyoxometalate-based molecular catalysts", Bifunctional Molecular Catalysis. Springer, pp. 127-60, (2011).
[9]        Tessonnier, J. -P., Goubert-Renaudin, S., Alia, S., Yan, Y., Barteau, M. A., "Structure, Stability, and Electronic Interactions of Polyoxometalates on Functionalized Graphene Sheets", Langmuir, 29:pp.393-402, (2013).
[10]      Avramidou, K.V., Zaccheria, F., Karakoulia, S. A., Triantafyllidis K. S., Ravasio, N., "Esterification of free fatty acids using acidic metal oxides and supported polyoxometalate (POM) catalysts", Molecular Catalysis, 439:pp. 60-71, (2017).
[11]      Li, B., Ma, W., Liu, J., Zuo, S., Li, X., "Preparation of MCM-41 incorporated with lacunary Keggin polyoxometalate and its catalytic performance in esterification. Journal of Colloid and Interface Science", 362(1): pp. 42-9, (2011).
[12]      Guan, G., Kusakabe, K., "Synthesis of biodiesel fuel using an electrolysis method", Chemical Engineering Journal, 153(1): pp. 159-63, (2009).
[13]      Putra, R. S., Pratama, K., Antono, Y., Idris, M., Rua, J., Ramadhani, H., "Enhanced electrocatalytic biodiesel production with chitosan gel (hydrogel and xerogel)", Procedia engineering, 609: pp. 14-48, (2016).
[14]      Helmi, M., Tahvildari, K., "The effect of changing the concentration of loaded KOH to a zeolite heterogeneous catalyst activity in biodiesel production by electrolysis", International Journal of Advanced, Biotechnology and Research (IJBR), 7: pp. 79-85, (2016).
[15]      Marwaha, A., Rosha, P., Mohapatra, S. K., Mahla, S. K., Dhir, A., "Waste materials as potential catalysts for biodiesel production: Current state and future scope", Fuel Processing Technology, 181: pp. 175-86, (2018).
[16]      Singh, V., Belova, L., Singh, B., Sharma, Y. C., "Biodiesel production using a novel heterogeneous catalyst, magnesium zirconate (Mg2Zr5O12): Process optimization through response surface methodology (RSM)", Energy Conversion and Management, 174: pp. 198-207, (2018).
[17]      Thangarasu, V., Siddharth, R., Ramanathan, A., "Modeling of process intensification of biodiesel production from Aegle Marmelos Correa seed oil using microreactor assisted with ultrasonic mixing", Ultrasonics Sonochemistry, 60: pp. 104764, (2020).
 
 
 
 
 [18]     Ghoreishi, S. M., Moein, P., "Biodiesel synthesis from waste vegetable oil via transesterification reaction in supercritical methanol", The Journal of Supercritical Fluids, 76: pp. 24-31, (2013).
[19]      Talebian-Kiakalaieh, A., Amin, N. A.S., Zarei, A., Noshadi, I., "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model", Applied Energy, 102: pp. 283-92, (2013).
[20]      Zhang, H., Li, H., Pan, H., Wang, A., Xu, C., Yang, S., "Magnetically recyclable basic polymeric ionic liquids for efficient transesterification of Firmiana platanifolia L.f. oil into biodiesel", Energy Conversion and Management,  153: pp. 462-72, (2017).
[21]      Xie, W., Wang, H., "Synthesis of heterogenized polyoxometalate-based ionic liquids with
Brönsted-Lewis acid sites: A magnetically recyclable catalyst for biodiesel production from low-quality oils", Journal of Industrial and Engineering Chemistry, 87: pp. 162-72, (2020).
[22]      Xu, L., Yang, X., Yu, X., Guo, Y., "Maynurkader. Preparation of mesoporous polyoxometalate–tantalum pentoxide composite catalyst for efficient esterification of fatty acid", Catalysis Communications, 9(7): pp. 1607-11, (2008).
[23]    طلوعی، س., کاه‌فروشان، د., محمدی، م.، "بررسی و ارزیابی استفاده از فرایند ازن‌زنی در حذف باقیماندۀ سم کاربندازیم از محیط‌های آبی." مهندسی شیمی ایران، 18(105):
52-64، (2019).
[24]      Halim, S. F. A., Kamaruddin, A. H., Fernando, W. J. N., "Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: Optimization using response surface methodology (RSM) and mass transfer studies", Bioresource Technology, 100(2): pp, 710-6, (2009).
 
[25]      Noshadi, I., Amin, N. A. S., Parnas, R. S., "Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: Optimization using response surface methodology (RSM)", Fuel, 94: pp. 156-64, (2012).
[26]      Aghel, B., Mohadesi, M., Ansari, A., Maleki, M., "Pilot-scale production of biodiesel from waste cooking oil using kettle limescale as a heterogeneous catalyst", Renewable Energy, 142: pp. 207-14, (2019).
[27]      Anting, N., Din, M. F. M., Iwao, K., Ponraj, M., Siang, A. J. L. M., Yong, L. Y., "Optimizing of near infrared region reflectance of mix-waste tile aggregate as coating material for cool pavement with surface temperature measurement", Energy and Buildings, 158: pp. 172-80, (2018).
[28]      Farooq, M., Ramli, A., Naeem, A., "Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones", Renewable Energy, 362: pp. 7-76, (2015).
[29]      Rabie, A. M., Shaban, M., Abukhadra, M. R., Hosny, R., Ahmed, S. A., Negm, N. A., "Diatomite supported by CaO/MgO nanocomposite as heterogeneous catalyst for biodiesel production from waste cooking oil", Journal of Molecular Liquids, 279: pp.224-31, (2019).
[30]      Jing, X., Li, Z., Lu, B., Han, Y., Chi, Y., Hu, C., "Assembly of polyoxometalate with graphene foam as a compressible monolithic catalyst for biodiesel production", Applied Catalysis A: General, 598:
pp. 117613, (2020).
[31] Rezayan, A., Taghizadeh, M., "Synthesis of magnetic mesoporous nanocrystalline KOH/ZSM-5-Fe3O4 for biodiesel production: Process optimization and kinetics study", Process Safety and Environmental Protection, 117: pp. 711-21, (2018).