الگوسازی و شبیه‌سازی فرایند حذف زیستی مس در یک ستون بستر ثابت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه علم و صنعت ایران

2 دانشگاه علم و صنعت

3 دانشجو دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران

چکیده

در اینتحقیق فرایند جذب زیستی فلز مس بهوسیلۀ قارچ میله­ای رزوپوساریزوس در یک بستر ثابت از پساب‌‌های صنعتی الگوسازی شدهاست. عملکرد سه ایزوترم لانگمویر، فروندلیچ و BET برای محاسبۀ شدت جذب مقایسه‌شدند. براساس نتایج الگوسازی، الگوی فرندلیچ با ضریب همبستگی 974/0 نسبت به دیگر الگو­های ارائه شده تطابق بهتری با نتایج تجربی نشانداد. بیشترین تطابقات الگوی فروندلیچ با داده‌های تجربی برابر در مقادیر 855/01/n= و 991/0K= بهدستآمد. در ادامه، اثر مؤلفه‌های الگوی انتخابشده بر میزان جذب بررسیشد که مشخصشد در یکضریب ثابت فروندلیچ، افزایش در مقدار توان الگو باعث افزایش ظرفیت جذب در دسترس برای غلظت کم املاح می­شود. همچنین ­اثر شرایط عملیاتی در ستون از قبیل بده حجمی، قطر ستون، طول ستون، غلظت اولیه و چگالی جاذب بر میزان جذب بررسیشد. بهطور کلی می­توان گقت که الگوسازی فرایندهای زیستی برای حذف فلزات یکی از ابزار مهم در شناخت رفتار این فرایندها است و با کمترین هزینه می­توان عملکرد فرایند را در شرایط مختلف عملیاتی ارزیابی‌کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and Simulation of Copper Biosorption Process in a Fixed Bed Column

نویسندگان [English]

  • A. Ghaemi 1
  • A. Hemmati 2
  • P. Amani 3
1 Nuclear Science and Technology Research Institute
2 Nuclear Science and Technology Research Institute
3 Nuclear Science and Technology Research Institute
چکیده [English]

In this research, the biosorption process of copper metal from industrial wastewater by Rhizopus Arrhizus has been modeled in a fixed bed column. The performances of the three isotherms of Langmuir, Freundlich, and BET were compared to calculate the adsorption rate. Based on the modeling results, the Freundlich model with a correlation coefficient of 0.974 showed better agreement with the experimental results than the other models. The highest agreement of Freundlich model with experimental data was obtained at k=0.991 and n= 0.8551. Then, the effect of the selected model parameters on the adsorption rate was investigated, and it was found that at a constant Freundlich coefficient, an increase in the power of the model enhances the available adsorption capacity for low solute concentrations. The effects of operating conditions in the column include volume flow, column diameter, column length, initial concentration, and adsorbent density on the adsorption rate were also investigated. In general, it can be stated that the modeling of biological processes for metal removal is one of the important tools in understanding the behavior of these processes with the least cost, and also the performance of the process can be evaluated at different operating conditions.

کلیدواژه‌ها [English]

  • Biosorption
  • Copper Metal
  • Rhizopus Arrhizus
  • Isotherm model
  • Fixed bed Column

 

[1]        Stratton, G. W., "Review in Environmental Toxicology", Elsevier, Amsterdam, (1987).
[2]        Gadd, G. M., "Encyclopedia of Microbiology", Academic Press Inc., Harcourt Brace Javanovich Publishers, San Diego, (1992).
[3]        Gadd, G. M., "Molecular biology and biotechnology of microbial interactions with organic". FEMS Microbiology Letter, Vol. 100, pp. 197-204 (1992).
[4]        Gadd, G. M, Griffiths, A. J., "Microorganisms and heavy metal toxicity". Microbial Ecology, 4:
pp. 303-317 (1978).
[5]        Volesky, B., "Biosorbent materials", TIBS, 5:
pp. 96-101 (1987).
[6]        Tung, C. C, Yang, Y. M., Chang, C. H., Maa, J. R., "Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration
with mixed surfactants". Waste Management, 22:
pp. 695-701 (2002).
[7]        Han, R., Zhang, J., Zou, W., Xiao, H., Shi, J., Liu, H., "Biosorption of copper (II) and lead (II) from aqueous solution by chaff in a fixed-bed column", Journal of Hazardous Materials, 133: pp. 262-268 (2006).
[8]        Amarasinghe, B., Williams, R. A., "Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater", Chemical Engineering Journal, 132: pp. 299-309 (2007).
 
[9]        Apiratikul, R., Pavasant,  P., "Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash", Chemical Engineering Journal, 144: pp. 245-258 (2008).
[10]      Fagundes-Klen, M., Veit, M., Borba, C., Bergamasco, R., Lima Vaz, L., Da Silva, E., "Copper Biosorption by Biomass of Marine Alga: Study of Equilibrium and Kinetics in Batch System and Adsorption/ Desorption Cycles in Fixed Bed Column", Air & Soil Pollution, 213: pp. 15-30 (2010).
[11]      Stylianou, M. A., Inglezakis, V. J., Moustakas, K. G., Malamis, S. P., Loizidou, M. D., "Removal of Cu (II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents", Desalination, 15: pp. 133-142 (2007).
[12]      Lu, X., Wang, L., Lei, K., Huang, J., Zhai, Y., "Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji", NW China, Journal of Hazardous Materials, 161:
pp. 1058–1062 (2009).
[13]      Shi, W. Y., Shao, H. B., Li, H., Shao, M. A., Du, S., "Progress in the remediation of hazardous heavy metal-polluted soils bynatural zeolite", Journal of Hazardous Materials, 170: pp. 1-6 (2009).
[14]      Volesky, B., "Biosorption of Heavy Metals", CRC Press, Boca Raton (1990).
[15]      Ting, V. P., Lawson, F., Prince, I. G., "Uptake of cadmium and zinc by the individual ion species", Journal of Biotechnology and Bioengineering, 34:
pp. 990-999 (1988).
[16]      Naja, G., Volesky, B., "Multi-metal biosorption in a fixed-bed flow-through column", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281: pp. 194-201 (2006).
[17]      McHale, A. P., McHale, S., "Microbiol biosorption of metals: potential in the treatment of metal pollution", Journal of Biotechnology Advances, 12: pp. 647-652 (1994).
[18]      Tsezos, M., Volesky, B., "The mechanism of uranium biosorption by Rhizopus arrhizus", Journal of Biotechnology and Bioengineering, 24: pp. 385-401 (1982).
[19]      Garnham, G. W., Codd, G. A., Gadd, G. M., "Effect of nutritional regime on accumulation of cobalt, manganese and zince by green microbial", Journal of Applied Microbiology and Biotechnology, 37:
pp. 270-276 (1992).
[20]      Kratochivil, D., Volesky, B.,"Advances in the Biosorption of Heavy Metals", Journal of Biotechnology Reviews, 16: pp. 291-300 (1998).
[21]      Kuyucak, N., Volesky, B., "Biosorbents for recovery of metals from industrial solutions", Journal of Biotechnology Letter, 33: pp. 823-831 (1989).
[22]      Gadd, G. M., "Heavy metal accumulation by bacteria and other microorganisms", Experientia, 46:
pp. 834-840 (1990).
[23]      Wase, J., Foster, C., "Biosorbents for Metal Ions", Taylor and Francis Ltd., London, (1997).
[24]      Greene, B., Darnall, D. W., "Microbial Minera Recovery", McGraw Hill (1990).
[25]      Remacle, J., "Biosorption of heavy Metals", CRC Press, Boca Raton, Florida (1990).
[26]      Norberg, A., Persson, H., "Accumulation of
heavy-metal ions by Zoogloea ramigera", Journal of Biotechnology and Bioengineering, 26: pp. 239-246 (1984).
[27]      Norberg, A., Rydin, S., "Development of a continuous process for metal accumulation by Zoogloea ramigera", Journal of Biotechnology and Bioengineering, 26, pp. 265-268 (1984).
[28]      Greene, B., McPherson, R., Darnall, D., "In Metals Speciation Separation and Recovery", lewis Publishers, Chelsea (1987).
[29]      Crist, R. H., OBerholser, K., Shank, N., Nguyen, M., "Nature of bonding between metallic ions and algal cell walls", Environmental Science and Technology, 15: pp. 1212-1217 (1981).
[30]      Holan, Z. R., Volesky, B., "Biosorption of lead and nickel by biomass of marine algae", Journal
of Biotechnology and Bioengineering, 43,
pp. 1001-1009 (1994).
[31]      Puranik, P. R., Paknikar, K. M. J., "Biosorption of lead and zinc from solutions using Streptoerticillium cinnamoneum waste biomass", Journal of Biotechnology, 55: pp. 113-124 (1997).
[32]      Ulku, Y., "The removal of pb by phanerocaete chrysporriomj", Water Resource, 34: pp. 4090-4100 (2000).
[33]      Wang, J. L., Chen, C., "Biosorption of heavy metals by Saccharomyces cerevisiae, a review", Biotechnology Advances, 24: pp. 427–51 (2006).
[34]      Park, J. K., Lee, J. W., Jung, J. Y., "Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells", Enzyme Microbial Technology, 33, pp. 371–8 (2003).
[35]      Ahluwalia, S. S., Goyal, D., "Microbial and plant derived biomass for removal of heavy metal from wastewater", Bioresource Technology, 98: pp. 43–57 (2007).
[36]      Vijayaraghavan, K., Yun, Y. S., "Bacterial biosorbents and biosorption", Biotechnology Advances, 26: pp. 266–291 (2008).
[37]      Mike, A. A., Kannan, P., Ajit, P. A., Piet N. L. L., "Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems", Journal of Industrial and Engineering Chemistry, 19: pp. 849-853 (2012).
[38]      Zachariah E. J., Muralidharan, V., "Feasibility study on the use of retting gas as a fuel source", Ministry for Non-Conventional Energy Sources, Govt. of India (1994).
[39]      Langmuir, I, "The adsorption of gases on plane surfaces of glass, mica and platinum", Journal of American Chemistry Society, pp. 1361–403 (1918).
 
[40]      Freundlich, H., "Adsorption in solutions", Z Phys Chem (Germany), 57: pp. 385–470 (1906).
[41]      Sips, R., "On the structure of a catalyst surface". Journal of Chemistry and Physics, 16: pp. 490–5 (1948).
[42]      Brunauer, S., Emmett, P. H., Teller, E., "Adsorption of gases in multimolecular layers", Journal of American Chemistry Society, 60: pp. 309–19 (1938).