مطالعه و بررسی مؤلفه‌های فرایند استخراج حلالی کبالت از محلول کلریدی با استفاده از مخلوط عامل‌های کمپلکس‌‌ساز Cyanex272، TBP و TOPO
DOR: 20.1001.1.17355400.1399.19.111.3.1

نوع مقاله : مقاله پژوهشی

نویسندگان

هیات علمی در پژوهشکده چرخه سوخت هسته ای، سازمان انرژی اتمی

چکیده

در این تحقیق، فرایند استخراج کبالت از محلول کلریدی با استفاده از مخلوط استخراج‌کننده‌های TBp ، TOPO و Cyanex272 بررسی شد. مؤلفه‌های فرایندی مانند
اثر
pH محلول آبی، غلظت استخراجکنندهها، نسبت فاز آبی به آلی و بازیابی با غلظتهای مختلف اسید سولفوریک در استخراج کبالت بررسی شدند. نتایج آزمایش‌ها نشان داد که مخلوط حاصل از استخراج‌کننده‌های TBp ، TOPO و Cyanex272 با غلظت بهترتیب برابر با 2/0، 1/0 و 3/0 مول بر لیتر برای استخراج بهینۀ کبالت با درصد استخراج بالای 39/91% مناسب است. اسید سولفوریک با غلظت یک مول بر لیتر بهعنوان یک واکنشگر مناسب در بازیابی محلول بهکار گرفته شد که درصد بازیابی آن بالای 2/99% بهدست آمد. در این مطالعه، یک سامانۀ هم‌افزایی مخلوط گزارش شد که در جداسازی یون‌های فلزی بسیار مؤثر است و می‌تواند در بازیابی باتری‌های لیتیومی با روش هیدرومتالورژی بهکار گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Study and Investigation of Process Parameters for Solvent Extraction of Cobalt from Chloride Solution by Using Mixture of Compelxing Agents Cyanex272, TBP, TOPO

چکیده [English]

In this study, the process of cobalt extraction from chloride solution was investigated by using a mixture of TBP, TOPO and Cyanex272 extractants. Process parameters such as the effect of aqueous solution of pH, extractant concentrations, aqueous to organic phase ratio and the stripping with different acids in cobalt extraction were investigated. The results showed that the obtained mixture from TBP, TOPO and Cyanex272 extractants with concentrations of 0.2, 0.1 and 0.3 mol/l, respectively, is suitable for the optimal extraction of cobalt with an extraction efficiency above 91.39%. Sulfuric acid with a concentration of one mole per liter was used as a suitable reagent in the recovery stage with the stripping percent of over than 99.2%. In this study, a mixed synergistic system was reported that is very effective in separation of metal ions and can be used in the recovery of lithium batteries by hydrometallurgical method

کلیدواژه‌ها [English]

  • Cobalt
  • Solvent extraction
  • synergistic
  • Operating Parameter
  • Mixture of Extractants
 
 
[1]        Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., "Extraction and Separation of Rare Earth Elements by Adsorption Approaches: Current Status and Future Trends". Sep. Purif. Rev., Article in
Press (2020), DOI:10.1080/15422119.2020.1792930, (2020).
[2]   توحیدی، م، "فلزات استراتژیک: مواد اولیه و شیوه‌های تولید، کارایی و کاربرد، عرضه و تقاضا، درجۀ بحرانی و آسیب‌پذیری"، جهاد دانشگاهی دانشگاه تهران، (1388).
[3]        Davis, J. R., "Nickel, Cobalt, and Their Alloys", ASM Specialty Handbook, UK, (2000).
[4]        Swain, B., Cho, S. S., Lee, G. H., Lee, C. G., Uhm, S., "Extraction/Separation of Cobalt by Solvent Extraction: A Review", Appl. Chem. Eng. 26:
pp. 631-639, (2015).
[5]        Swain, B., Shimand, H. W., Lee, C. G., "Extraction/Separations of Cobal.t by Supported Liquid Membrane: A Review", Korean Chem. Eng. Res., 57: pp. 313-320, (2019)
[6]        Juang, R., Kao, H., "Extraction separation of Co(II)/Ni(II) from concentrated HCl solutions in rotating disc and hollow-fiber membrane contactors", Sep. Purif. Technol., 42, pp. 65-73, (2005).
[7]        Torkaman, R., Asadollahzadeh, M., Torab-Mostaedi, M., Maragheh-Ghannadi, M.," Reactive extraction of cobalt sulfate solution with D2EHPA/TBP extractants in the pilot plant Oldshue–Rushton column", Chem. Eng. Res. Des., 120: pp. 58-68, (2017).
[8]        Torkaman, R., Asadollahzadeh, M., Torab-Mostaedi, M., Maragheh-Ghannadi, M., "Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process", Sep. Purif. Technol., 186: pp. 318-325, (2017).
[9]        Suzuki, T., Nakamura, T., Inoue, Y., Niinae, M., Shibata, J., "A hydrometallurgical process for the separation of aluminum, cobalt, copper and lithium in acidic sulfate media", Sep. Purif. Technol., 98:
pp. 396-401, (2012).
[10]      Grigorieva, N. A., Fleitlikh, I. Y., "Cobalt extraction from sulfate media with bis(2,4,4-trimethylpentyl)dithiophosphinic acid in the presence of electron donor additives", Hydrometallurgy, 138: pp. 71-78, (2013)
[11]      Nadimi, H., Amirjani, A., Fatmehsari, D. H., Firoozi, S., Azadmehr, A. "Effect of tartrate ion on extraction behavior of Ni and Co via D2EHPA in sulfate media", Miner. Eng., 69: pp.177-184, (2014).
[12]      Wieszczycka, K., Wojciechowska, A., Krupa, M., "Equilibrium and mechanism of cobalt(II) extraction from chloride solution by hydrophobic
2-pyridineketoxime", Sep. Purif. Technol., 142:
pp. 129-136, (2015).
[13]      Mondal, S., Kumar, V., Sharma, J. N., Hubli, R. C., Suri, A. K., "Evaluation of n-octyl(phenyl)phosphinic acid (OPPA) as an extractant for separation of cobalt(II) and nickel(II) from sulphate solutions", Sep. Purif. Technol., 89: pp. 66-70, (2012).
[14]      Zhang, W., Pranolo, Y., Urbani, M., Cheng, C. Y., "Extraction and separation of nickel and cobalt with hydroxamic acids LIX®1104, LIX®1104SM and the mixture of LIX®1104 and Versatic 10", Hydrometallurgy, 119-120: pp. 67-72, (2012).
[15]      Sayar, N. A., Filiz, M., Sayar, A. A., "Extraction of Co(II) and Ni(II) from concentrated HCl solutions using Alamine 336", Hydrometallurgy, 96:
pp.148-153 (2009).
[16]      Lin, L., Jian-hong, W., Gen-Yi, W., Toyohisa, F., Atsushi, S., "Extraction studies of cobalt and nickel from chloride solution using PC88A", Trans. Nonferrous Met. Soc. China, 16: pp. 687-692, (2006).
[17]      Zhu, Z., Zhang, W., Pranolo, Y., Cheng, C. Y., "Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction", Hydrometallurgy 127-128: pp. 1-7, (2012).
[18]      Liu, Y., Lee, M., "Separation of Co and Ni from a chloride leach solutions of laterite ore by solvent extraction with extractant mixtures", J. Ind. Eng. Chem., 28: pp.322-327, (2015).
[19]      Padhan, E., Sarangi, K., "Separation of molybdenum and cobalt from spent catalyst using Cyanex 272 and Cyanex 301", Int. J. Miner. Process 127: pp. 52-61, (2014).
[20]      Cheng, C. Y., "Solvent extraction of nickel and cobalt with synergistic systems consisting of carboxylic acid and aliphatic hydroxyoxime", Hydrometallurgy, 84: pp. 109–117, (2006).
[21]      Cheng, C. Y., Urbani, M. D., Davies, M. G., Pranolo, Y., Zhu, Z., "Recovery of nickel and cobalt from leach solutions of nickel laterites using a synergistic system consisting of Versatic 10 and Acorga CLX 50", Miner. Eng., 77: pp. 17-24, (2015).
[22]      Shan, Z., Hui-Ping, H., Ji-Yuan, L., Fang, H., "The Coordination Structure of the Extracted Cobalt(II) Complex with a Synergistic Mixture Containing Lix63 and Versatic10", J. Chinese Chem. Soc., 64: pp. 833-842, (2017).
[23]      Takahashi, V. C. I., Junior, A. B. B., Espinosa, D. C. R., Tenório, J. A. S., "Enhancing cobalt recovery from Li-ion batteries using grinding treatment prior to the leaching and solvent extraction process". J. Environ. Chem. Eng., 8: pp. 103801, (2020).
[24]      Wang, L. Y., Lee, M. S., "Synergistic extraction of Co(II) over Ni(II) from chloride solutions by a mixture of Cyanex 301 and LIX 63", Geosystem Eng. 20: pp. 311-317, (2017).
[25]      Wellens, S., Thijs, B., Möller, C., Binnemans, K., "Separation of cobalt and nickel by solvent extraction with two mutually immiscible ionic liquids", Phys. Chem. Chem. Phys., 15: pp. 9663-9669, (2013).
[26]      Cole, P. M., "The introduction of solvent-extraction steps during upgrading of a cobalt refinery", Hydrometallurgy, 64: pp. 69-77, (2002).
[27]      Coll, M. T., Fortuny, A., Kedari, C. S., Sastre, A. M., "Studies on the extraction of Co(II) and Ni(II) from aqueous chloride solutions using Primene
JMT-Cyanex272 ionic liquid extractant", Hydrometallurgy, 125-126: pp. 24-28, (2012).
[28]      Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., Hemmati, A., "Enhancing Cerium Recovery from Leaching Solution of Glass Polishing Powder Waste Using Imidazolium Ionic Liquid", Waste Biomass Valori., Article in Press, DOI:10.1007/s12649-020-01070-w, (2020).
[29]      Shakib, B., Torkaman, R., Torab-Mostaedi, M., Asadollahzadeh, M., "The Performance of Pulsed Scale-up Column for Permeable of Selenium and Tellurium Ions to Organic Phase, Case Study: Disc and Doughnut Structure", Chem. Eng. Process, Article in Press, DOI:10.1016/j.cep.2020.108042: 108042, (2020).
[30]      Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., "Coupling minimum cross-entropy model with experimental data to determine the drop size distribution for lanthanum extraction in ARDC column", Sep. Sci. Technol. Article in Press, DOI: 10.1080/01496395.2020.1754429, (2020).
[31]      Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., "Continuous Extraction of Europium(III) by
Ionic Liquid in the Rotating Disk Column with
an Asymmetrical Structure Aimed at the Evaluation of Reactive Mass Transfer", ACS Omega, 5:
pp. 18700-18709, (2020).
[32]      Shakib, B., Torab-Mostaedi, M., Outokesh, M., Asadollahzadeh, M., "Direct extraction of Mo(VI) from sulfate solution by synergistic extractants in the rotation column", Chinese J. Chem. Eng., 28:
pp. 445-455, (2020).
[33]      Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., "Study on the feasibility of using a pilot plant Scheibel extraction column for the extraction and separation of lanthanum and cerium from aqueous solution", Korean J. Chem. Eng. 37: pp. 322-331, (2020).
[34]      Asadollahzadeh, M., Torkaman, R., Torab-Mostaedi, M., Moazami, F., "Estimation of Performance with the Two Truncated Probability Density Functions, Case Study: Using Mixco Column to Extract Samarium and Gadolinium", Sep. Sci. Technol . Article in Press, DOI: 10.1080/01496395.2020. 1757713, (2020).
[35]      Shakib, B., Torkaman, R., Torab-Mostaedi, M., Asadollahzadeh, M., "Revealing mass transfer and hydrodynamic effects in a PRDC column by using the integration of extraction and separation for molybdenum and tungsten ions from aqueous solution", Chem. Pap., Article in Press, DOI:10.1007/s11696-020-01241-y, (2020).
[36]      Shakib, B., Torkaman, R., Torab-Mostaedi, M., Asadollahzadeh, M. "Exact hydrodynamic description of pilot plant Oldshue-Rushton contactor: a case study with the introduction of selenium and tellurium into reaction system", Int. J. Environ. Anal. Chem., Article in Press, DOI:10.1080/03067319.2020. 1781103, (2019).
[37]      Wellens, S., Thijs, B., Binnemans, K., "An environmentally friendlier approach to hydrometallurgy: highly selective separation of cobalt from nickel by solvent extraction with undiluted phosphonium ionic liquids", Green. Chem., 14:
pp. 1657-1665, (2012).
[38]      Cheng, C.Y., Barnard, K.R., Zhang, W., Robinson, D.J., "Synergistic Solvent Extraction of Nickel and Cobalt: A Review of Recent Developments", Solvent Ext. Ion. Exch., 29: pp. 719-754, (2011).
[39]      Zhang, Y., Tang, J., Liu, S., Hu, F., Liu, M., Jin, W., Hu, J., "Extraction separation of copper and cobalt dependent on intermolecular interaction between Cyanex302 and Cyphos IL101", Sep. Purif. Technol. 240: pp. 116625, (2020).
 
[40]      Huang, T., Wang, Y. X., Hu, H. P., Hu, F.,
Luo, Y. Q., Luo, S. J., "Phase separation in
solvent extraction of cobalt from acidic sulfate solution using synergistic mixture containing dinonylnaphthalene sulfonic acid and 2-ethylhexyl 4-pyridinecarboxylate ester", Trans. Nonferrous. Met. Soc. 29: pp. 1107-1116, (2019).
[41]      Rafighi, P., Yaftian, M. R., Noshiranzadeh, N., "Solvent extraction of cobalt(II) ions; cooperation of oximes and neutral donors", Sep. Purif. Technol., 75: pp. 32-38, (2010).
[42] Zhao, J. M., Shen, X. Y., Deng, F. L., Wang, F. C., Wu, Y., Liu, H. Z., "Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A", Sep. Purif. Technol. 78: pp. 345-351, (2011).