مدل‌‌سازی ناپایای فیلمی جذب واکنش‌دار هم‌زمان دو گاز

نوع مقاله : مقاله مروری

نویسنده

دانشگاه علم و صنعت ایران

چکیده

در این پژوهش، یک مدل فیلمی برای توصیف ناپایای جذب هم‌زمان دو گاز طراحی شده است. مدل‌سازی فیلمی جذب واکنش‌دار منجر به معادلات دیفرانسیل پاره­ای با شرایط اولیه و مرزی حاکم بر فیلم می‌شود. روش حل تحلیلی معادلات که در این تحقیق به کار رفته، ترکیبی از دو روش اصل برهم‌نهشتی و جداسازی متغیرها است. معادلات غلظت حاصل از حل تحلیلی معادلات تابع زمان و مختصات فیلم است و می­توان در طول فیلم به‌طور دقیق غلظت و شار انتقال جرم اجزاء را محاسبه کرد. معادلات دیفرانسیل پاره­ای حاصل از مدل‌سازی فیلمی همچنین به روش عددی حل شدند. برای ارزیابی نتایج مدل‌سازی فیلمی، از داده­های تجربی برج پرشده آزمایشگاهی استفاده شده است. نتایج حل تحلیلی و عددی معادلات با نتایج تجربی مقایسه شده که نشان می­دهد مدل ارائه‌شده به خوبی غلظت و شار انتقال جرم اجزاء را در طول فیلم پیش‌بینی می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Unsteady-State Film Model: Simultaneous Reactive Absorption of Two Gases

نویسنده [English]

  • A. Ghaemi
Iran University of Science and Technology
چکیده [English]

In this work, a film model has been developed to describe unsteady state simultaneous absorption of two gases. Film modeling of reactive absorption results in initial boundary-value problem. The analytical solution applied in this work is a combination of the superposition principles and the separation of variables methods. The concentration equations obtained in the model contain two independent variables of time and film width. Therefore, solving the model gives component concentrations at any time or film length. In addition, the partial differential equations were solved numerically. The experimental data were obtained using laboratory packed column. The model results were validated using experimental data. A comparison between the model results and experimental data indicates that the model has good agreement with experimental data.

کلیدواژه‌ها [English]

  • Film Model
  • Simultaneous Reactive Absorption of Two Gases
  • Unsteady-State Modeling

 

[1]        Ghaemi A., Torab-Mostaedi M., Maragheh M., "Nonequilibrium dynamic modeling of simultaneous reactive absorption of gases", Journal of the Taiwan Institute of Chemical Engineers Vol. 42 (1), pp. 173-179 (2011).
[2]        Ghaemi A., Torab-Mostaedi M., Maragheh M., Shahhosseini Sh., "Kinetics and absorption rate of CO2 into partially carbonated ammonia solutions", Chemical Engineering Communications, Vol. 198 (10), pp. 1169-1181 (2011).
[3]        Ghaemi A., Torab-Mostaedi M., Maragheh M., "Nonequilibrium modeling of reactive absorption processes", Chemical Engineering Communications, Vol. 196 (9), pp. 1076-1089 (2009).
[4]        Van Krevelen D. W., Hoftizer P. J., "Applicability of the results of small-scale experiments to the design of technical apparatus for gas absorption", Transaction Institute Chemical Engineering, Vol. 32, pp 60, (1954).
[5]        Roper G. H., Hatch T. F., Pigford R. L. "Theory of Absorption and Reaction of Two Gases in a Liquid", Industrial & Engineering Chemistry Fundamentals, Vol. 1, pp 144–152, (1962).
[6]        Pearson J. R. A., "Diffusion of one substance into a semi-infinite medium containing another with second-order reaction", Applied Science Research, Vol. 11, pp 321, (1961).
[7]        Perry R. H., Pigford R. L., "Kinetics of gas-liquid reaction", Industrial Engineering Chemistry, Vol. 45, pp 1247-1253, (1953).
[8]        Etemad E, Ghaemi A, Shirvani M., "Rigorous correlation for CO2 mass transfer flux in reactive absorption processes", International Journal of Greenhouse Gas Control, Vol. 42, pp. 288-295 (2015).
[9]        Pangarkar V. G., Sharma M. M., "Simultaneous absorption and reaction of two gases: absorption of CO2 and NH3 in water and aqueous solutions of alkanolamines", Chemical Engineering Science, Vol. 29, pp 2297-2306, (1974).
[10]      Wolfgang L., Stichlmair J., "Determination of Mass Transfer Parameters by Means of chemical Absorption", Chemical Engineering Technology, Vol. 25, pp 385-391, (2002).
[11]      Anderew, S. P. S., "A rapid method of measuring absorption rates and its application to CO2 absorption into paetially carbonated ammonia liquor", Chemical Engineering Science, Vol. 3, pp 279-286, (1954).
[12]      Sherwood T. K., Pigford R. L., Wilke C. R., "Mass Transfer", McGraw-Hill, New York, (1975).
[13]      DeLancey, G. B., "Multicomponent film-penetration theory with linearized kinetics—I. Linearization theory and flux expressions", Chemical Engineering Science, 29, 2315–2323, (1974).
[14]      Shen, J., Yang, Y. M. and Maa, J. R., "Promotion Mechanism for CO2 absorption into partially carbonated ammonia solutions", Journal of Chemical Engineering of Japan, Vol. 32, pp 378-381, (1999).
[15]      Brid R. B., Stewart W. E., Lightfoot E. N., "Transport Phenomena", Wiley, New York, (1960).
[16]      Danckwerts P. V., "Gas liquid reactions", McGraw-Hill, New York, (1970).
[17]      Taylor R., Krishna R. "Multicomponent Mass Transfer", Wiley, New York, (1993).
[18]      Andrei D., Polyanin V., Zaitsev F., "Handbook of linear partial differential equations for engineers and scientists", Chapman and Hall-CRC, (2002).
[19]      Schneider R., Kenig E. Y., Gorak A., "Dynamic modeling of reactive absorption with Maxwell-stefan approach", Transaction IChemE, Vol. 77, pp 633-637, (1999).
[20]      Kenig E. Y., Schneider R., Gorak A., "Rigorous dynamic modeling of complex reactive absorption processes", Chemical Engineering Science, Vol. 54, pp 5195-5203, (1999).
[21]      Schneider R., Gorak A., "Modeling optimization for the dynamic simulation of reactive absorption processes", Chemical Engneering Technology, Vol. 24, pp 979-963, (2000).
[22]      Schneider R., Sander F., Gorak A, "Dynamic simulation of industrial reactive absorption processes", Chemical Engineering and Processing, Vol. 42, pp 955-964, (2003).
[23]      Noeres C., Kenig E. Y., Gorak A., "Modeling of reactive separation processes: reactive absorption and reactive distillation", Chemical Engineering and Processing, Vol. 42, pp 157-178, (2003).