حذف کروم (VI) از پساب‌های مصنوعی با استفاده از جاذب سلولزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار مهندسی شیمی، دانشگاه کردستان

2 کارشناس مهندسی شیمی، دانشگاه کردستان

چکیده

فرایندهای طبیعی و فعالیتهای صنعتی می‌توانند باعث ورود کروم به منابع آب شوند. کروم در آب ممکن است وارد زنجیرۀ غذایی شود و بروز بیماریهایی چون سرطان، درماتیت پوستی و تهدید سلامتی انسان را در پی داشته باشد. در مقالۀ حاضر از جاذب سلولزی- مقوای کرافت برای جداکردن کروم (VI) از آب استفاده شد. مقدار خاکستر جاذب سلولزی 2%، و مساحت سطح ویژه براساس شاخۀ جذب ایزوترم BJH برابر m2/g 6/3 تعیین شدند. همچنین جاذب سلولزی با روشهای FTIR، SEM، و EDX تعیین مشخصات شد. اثرات pH برروی جذب سطحی کروم (VI) بررسی و مشخص شد که با افزایش pH محلول، جداسازی کروم (VI) کاهش می‌یابد. ایزوترم جذب سطحی با مدل لانگمویر تطبیق داشت. دادههای سینتیکی در توافق با مدل مرتبه شبه اول بود. مطالعات ترمودینامیکی نشان دادند که جذب سطحی کروم (VI) برروی جاذب سلولزی، مقوای کرافت، گرماگیر و خود به خودی بود. جاذب سلولزی- مقوای کرافت به‌صورت پودری و ورقهای قابلیت حذف کروم (VI) را از محلولهای آبی داشت. در شرایط عملیاتی pH 2، مقدار جاذب پودری g 3 در mL 50 محلول کروم (VI) با غلظت mg/L 10 در دمای °C 25 و بعد از h 2 بازده حذف کروم (VI) معادل با 16/99% به دست آمد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Chromium (VI) from Synthetic Wastewater by Using Cellulose Adsorbent

نویسندگان [English]

  • F. Akhlaghian 1
  • Sh. Moradi 2
1 Associate Professor of Chemical Engineering, University of Kurdistan
2 B. Sc. in Chemical Engineering, University of Kurdistan
چکیده [English]

Natural processes and industrial activities can cause chromium to enter water resources. Chromium in water enters food chain and causes diseases like cancer, skin dermatitis, and other health problems. In this work, cellulose adsorbent, Kraft paper, was used to remove chromium (VI) from water. The ash of the cellulose adsorbent was 2%, and its specific surface area was 3.6 m2/g according to the BJH isotherm adsorption branch. Cellulose adsorbent was also characterized by FTIR, SEM, and EDX methods. The effects of pH were investigated in Cr(VI) adsorption and showed that with the increase in pH of the solution, Cr (VI) removal was decreased.The adsorption isotherm was corresponded to the Langmuir model.The kinetic data was in agreement with the pseudo first order model.The thermodynamic studies showed that Cr (VI) adsorption on the cellulose adsorbent was endothermic and spontaneous. The cellulose adsorbent, Kraft paper, in powder and sheet forms can remove Cr (VI) from water solutions. In the operating conditions of pH 2, powdery adsorbent dose 3 g in 50 mL of chromium solution with the concentration of 10 mg/L in 25 °C after 2 h, 99.16% chromium (VI) removal yield was obtained.
 

کلیدواژه‌ها [English]

  • Chromium (VI) removal
  • Wastewater Treatment
  • Cellulose adsorbent
  • Kraft paper
  • Powdery adsorbent
  • Sheet adsorbent
[1]        Dokmaj, T., Ibrahim, T., Khamis, M., Abouleish, M., Alam, I., "Chemically modified nanoparticles usage for removal of chromium from sewer water", Environmental Nanotechnology, Monitoring & Management, 14, 100319, pp. 1-11 (2020).
[2]        Fu, Z., Xi, S., "The effects of heavy metals on human metabolism", Toxicology Mechanisms and Methods, 30, pp. 167-176 (2020).
[3]        Sharma, S. K., Petrusevski, B., Amy, G., "Chromium removal from water: A review", Journal of Water Supply: Research and Technology, 57, pp. 541-553 (2008).
[4]        Rutheven, D. M., "Principles of adsorption and adsorption process", John Wiley & Sons (1984).
[5]        Behbodi, G., Shayesteh, K., "Heavy Metal Removal Methods from Water and Wastewater: A Review Study", Journal of Research in Environmental Health, 6, pp. 145-160 (2020).
[6]        Wang, J., Chen, C., "Biosorbents for heavy metals removal and their future", Biotechnology Advances, 27, pp. 195–226 (2009).
[7]        Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Yang, S., Sun, Y., Zhang, K., Xu, J., Zheng, W., Hu, Z., Yang, Y., Gao, Y., Chen, Y., Zhang, X., Gao, F., Zhang, Y., "Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review", Chemosphere, 211, pp. 235-253 (2018).
[8]        Zhang, S. F., Yang, M. X., Qian, L. W., Hou, C., Tang, R. H., Yang, J. F., Wang, X. C., "Design and preparation of a cellulose-based adsorbent modified by imidazolium ionic liquid functional groups and their studies on anionic dye adsorption", Cellulose, 25, pp. 3557–3569 (2018).
[9]        Yue, X., Huang, J., Jiang, F., Lin, H., Chen, Y., "Synthesis and characterization of cellulose-based adsorbent for removal of anionic and cationic dyes", Journal of Engineered Fibers and Fabrics, 14, pp. 1–10 (2019).
[10]      Qiu, Y., Lin, C., Liu, Y., Lv, Y., Liu, M., "Functionalization of cellulose as imprinted adsorbent for selective adsorption of matrine", Journal of Applied Polymer Science, 137, 48392, pp. 1-8 (2020).
[11]      Esmaeili, A., Ghasemi, S., Zamani, F., "Investigation of Cr(VI) adsorption by dried brown algae sargassum sp. and its activated carbon", Iranian Journal of Chemistry and Chemical Engineering, 31, pp. 11-19 (2012).
[12]      Pourkhabbaz, A., Boosaeidi, N., Jahani, M., "Removal of chromium (VI) from polluted water using barberry leaf as a cheap adsorbent", Environmental Sciences, 11, pp. 81-88 (2014).
[13]      Fawzy, M., Nasr, M., Abdel-Gaber A., Fadly, S., "Biosorption of Cr(VI) from aqueous solution using agricultural wastes, with artificial intelligence approach", Separation Science and Technology, 5, pp. 416-426 (2016).
[14]      Gogoi, S., Chakraborty, S., Saikia, M. D., "Surface modified pineapple crown leaf for adsorption of Cr(VI) and Cr(III) ions from aqueous solution", Journal of Environmental Chemical Engineering, 137, pp. 2492-2501 (2020).
[15]      Ren, B., Zhang, Q., Zhang, X., Zhao, L., Li, H., "Biosorption of Cr(VI) from aqueous solution using dormant spores of Aspergillus niger", RSC Advances, 8, pp. 38157-38165.
[16]      Teshale, F., Karthikeyan, R., Sahu, O., "Synthesized bioadsorbent from fish scale for chromium (III) removal", Micron, 130, 102817, pp. 1-15 (2020).
[17]      Rice, E. W., Baird, R. B., Eaton, A. D., "Standard methods for the examination of water and wastewater", 23rd edition (2017).
[18]      Wang, P., Lo, I. M. C., "Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water", Water Research, 43, pp. 3727-3734 (2009).
[20]      Mullet, M., Fievet, P., Szymezyk, A., Foissy, A., Reggiani, J.-C., Pagetti, J., "A simple method of the point of zero charge of ceramic membranes", Desalination, 121, pp. 41-48 (1999).
[21]      Rodrigues, L. A., Silva, M. L. C. P., "Adsorption kinetic, thermodynamic and desorption studies of phosphate onto hydrous niobium oxide prepared by reverse microemulsion method", Adsorption, 16, pp. 173-181 (2016).
[22]      Murcia-Salvador, A., Pellicer, J. A., Fortea, M. A., Gómez-López, V. M., Rodríguez-López, M. I., Núñez-Delicado, E., José A. Gabaldón, J. A., "Adsorption of Direct Blue 78 Using Chitosan and Cyclodextrins as Adsorbents", Polymers, 11, pp. 1003-1020 (2019).
[23]      Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S. R. W., Goodarzi, M., Javadian, H., "Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L", International Journal of Science and Technology, 11, pp. 1835-1844 (2014).
[24]      Sudiarti, T., Wahyuningrum, D., Bundjali, B., Arcana, I. M., "Mechanical strength and ionic conductivity of polymer electrolyte membranes prepared from cellulose acetate-lithium perchlorate", IOP Conferences Series: Materials Science and Engineering Innovation in Polymer Science and Technology, 223, 012052, pp.1-8 (2016).
[25]      Oliveira Lopes, J. O., Garcia, R. A., Souza,N. D., "Infrared spectroscopy of the surface of thermally-modified teak juvenile wood", Maderas, Cicncia y technologia, 20, pp. 737-746 (2018).
[27]      Parlayici, Ş, Pehlivan, E., "Comparative study of Cr(VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic", Journal of Analytical Science and Technology, 10, 15, pp. 1-8 (2019).
[28]      Ahalya, K., Suriyanarayanan, N., Ranjithkumar, V., "Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles", Journal of Magnetism and Magnetic Materials, 372, pp. 208–213 (2014).
[29]      Chen, S., Yue, Q., Gao, B., Xu, X., "Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue", Journal of Colloid and Interface Science, 349, pp. 256–264 (2010).
[30]      Ballav, N., Choi, H. J., Mishra, S. B., Maity, A., "Synthesis, characterization of Fe3O4@glycine doped polypyrrole magnetic nanocomposites and their potential performance to remove toxic Cr(VI)", Journal of Industrial and Engineering Chemistry, 20, pp. 4085-4093 (2014).
[31]      Mehrabi, N., Soleimani, M., Yeganeh, M., Sharififard, H., "Parameters optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles", RSC Advances, 5, pp. 51470-51482 (2015).
[32]      Vargas, C., Brandão, P. F. B., Ágreda, J., Catsillo, E., "Bioadsorption using compost: an alternative for removal of chromium (VI) from aqueous solutions", BioResources, 7, pp. 2711-2727 (2012).
[33]      Tefera, D. Y., Prasad, A. G. D., "Biosorption of hexavalent chromium using bark of cassia spectabilis", Science, Technology and Arts Research Journal, 3, pp. 83-87 (2014). 
[34]      Chen, H., Dou, J., Xu, H., "Removal of Cr(VI) ions by sewage sludge compost biomass from aqueous solutions: Reduction to Cr(III) and biosorption", Applied Surface Science, 425, pp. 728-735 (2017).
[35]      Gonza Romero-González, J., Peralta-Videa, J. R., Rodríguez, E., Ramirez, S. L., Gardea-Torresdey, J. L., "Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass", The Journal of Chemical Thermodynamics, 37, pp. 343-347 (2015).
[36]      Chen, S., Yue, Q., Gao, B., Xu, X., "Equilibrium and kinetic adsorption study of the adsorptive removal of Cr(VI) using modified wheat residue", Journal of Colloid and Interface Science 349, pp. 256-264 (2010).