همنهشت امولسیونی پلی (استایرن- دی وینیل بنزن) و بررسی اثر افزایش میزان نمک در فاز آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار مهندسی شیمی و پلیمر، دانشگاه یزد

2 استادیار مهندسی پلیمر، دانشگاه آزاد اسلامی واحد شهررضا

3 کارشناس ارشد مهندسی پلیمر، دانشگاه یزد

چکیده

بسپارهای بسیار متخلخل بیشتر بهروش بسپارش امولسیونی تهیه میشوند. در این تحقیق ابتدا همنهشت امولسیونی پلی(استایرن- دی وینیل بنزن)، انجام ، سپس اثر افزایش میزان نمک در فاز آبی بر ساختار بسپار متخلخل بررسی شد. از میکروسکوپ الکترونی روبشی برای بررسی ریخت‌شناسی سطح و تعیین توزیع اندازۀ قطر حفرههای سطحی استفاده شد. مقدار مناسب فاز آبی به فاز روغنی، برای بسپارش امولسیونی و تولید بسپار متخلخل حد اقل 75 درصد است و افزودن یک درصد نمک در فاز آبی باعث ایجاد حفره‌هایی بیشتر با اندازۀ کوچک‌تر در سطح بسپار متخلخل شد و با افزایش نمک، حفره‌هایی با قطر بیشتر و با توزیع یکنواخت‌تر به دست آمد. با توجه به هدف پژوهش که ایجاد حفره‌های ریز سطحی بود، نمونۀ مناسب در این زمینه نمونۀ حاوی یک درصد نمک با نسبت فاز آبی به فاز روغنی 75 درصد به 25 درصد بود، که در این شرایط حفره‌هایی بیشتر با اندازۀ کوچک‌تر در دو اندازۀ شاخص با توزیع یکنواخت و پراکندگی متقارن با PDI در حدود 1 و با قطر متوسط 5.21 میکرومتر حاصل شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Emulsion Synthesis of Poly (Styrene-Divinylbenzene) and Investigation of the Effect of Increasing the Amount of Salt in the Aqueous Phase

نویسندگان [English]

  • A. Radaei 1
  • H. Izadi Vasfi 2
  • M. Shahbazi 3
1 Assistant Professor of Polymer & Chemical Engineering, Yazd University
2 Assistant Professor of Islamic Azad University, Shahreza Branch
3 M. Sc. in Polymer & Chemical Engineering, Yazd University
چکیده [English]

Highly porous polymers are mainly produced by emulsion polymerization. In this study, first the emulsion synthesis of poly (styrene-divinylbenzene) was performed and then the effect of increasing the amount of salt in the aqueous phase on the structure of porous polymer was investigated. Scanning electron microscopy was used to study the surface morphology and determine the size distribution of surface cavities. The appropriate amount of aqueous phase to oil phase for emulsion polymerization and production of porous polymer is at least 75% and adding of one percent of salt in the aqueous phase caused more pores with smaller size on the surface of the porous polymer and by increasing the salt, pores with larger diameter and more uniform distribution were obtained. According to the purpose of the study, which was to create fine surface cavities, the appropriate sample in this field was a sample containing 1% salt with a ratio of water phase to oil phase of 75% to 25%, in which case more cavities with smaller size in two index sizes with distribution uniform and symmetrical scattering with PDI of about 1 with an average diameter of 5.21 μm was obtained.

کلیدواژه‌ها [English]

  • Porous Polymers
  • Polymer Emulsions
  • Poly (Styrene-Divinylbenzene)
  • Salt Effect
[1]        Silverstein, M. S., Cameron, N. R., Hillmyer M. A., "Porous Polymers", John Wiley and Sons, (2011).
[2]        Cameron, N. R., "High internal phase emulsion templating as a route to well-defined porous polymers", J. Polymer, 46(5), pp.1439–1449, (2005).
[3]        Zhang, H., Cooper, A. I., "Synthesis and applications of emulsion-templated porous materials", J. Soft Matter, 1, pp. 107-113, (2005).
[4]        Zhao, C., Danish, E., Cameron, N. R., Kataky R., "Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport: applications in electrochemical sensing", J. Materials Chemistry, 17, pp. 2446-2453, (2007).
[5]        Hughes, J. M., Budd, P. M., Tiede, K., Lewis, J., "Polymerized high internal phase emulsion monoliths for the chromatographic separation of engineered nanoparticles", J. Appl. Polym. Sci., 132, pp. 41229, (2014).
[6]        Mercier, A., Deleuze, H., Mondain-Monval, O., "Preparation and functionalization of (vinyl)polystyrene polyHIPE: Short routes to binding functional groups through a dimethylene spacer", J. Reactive and Functional Polymers, 46(1), pp. 67-79, (2000).
[7]        Desforges, A., Arpontet, M., Deleuze, H., Mondain-Monvalb, O., "Synthesis and functionalisation of polyHIPE beads", J. Reactive and Functional Polymers, 53(2–3), pp. 183-192, (2002).
[8]        Barbetta, A., Cameron, N. R., "Morphology and Surface Area of Emulsion-Derived (PolyHIPE) Solid Foams Prepared with Oil-Phase Soluble Porogenic Solvents: Span 80 as Surfactant", J. Macromolecules, 37(9), pp. 3188–3201, (2004).
[9]        Sergienko, A. Y., Tai, H., Narkis, M., Silverstein, M. S., "Polymerized high internal phase emulsions containing a porogen: Specific surface area and sorption", J. Applied Polymer Science, 94(5), pp. 2233-2239, (2004).
[10]      Krajnc, P., Leber, N., Štefanec, D., Kontrec, S., Podgornik, A., "Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media", J. Chromatography A, 1065(1), pp. 69-73, (2005).
[11]      Abbasian, Z., Moghbeli, M. R., "Open porous emulsion‐templated monoliths: Effect of the emulsion preparation conditions on the foam microstructure and properties", J. Applied Polymer Science, 116(2), pp. 986-994, (2010).
[12]      Mao, D., Li, T., Liu, H., Li, Z., Shao, H., Li, M., "Preparation of macroporous polyHIPE foams via radiation-induced polymerization at room temperature", J. Colloid and Polymer Science, 291, pp. 1649–1656, (2013).
[13]      Viswanathan, P., Johnson, D. W., Hurley, C., Cameron, N. R., Battaglia, G., "3D Surface Functionalization of Emulsion-Templated Polymeric Foams", J. Macromolecules, 47(20), pp. 7091–7098, (2014).
[14]      Tebboth, M., Menner, A., Kogelbauer, A., Bismarck, A., "Polymerised high internal phase emulsions for fluid separation applications", J. Current Opinion in Chemical Engineering, 4, pp. 114-120, (2014).
[15]      Jing, G., Yu, H., Wang, L., Shan, J., Huang, J., Abdin, Z., Zhao, Y., Chen, Y., "Synthesis and properties of polystyrene-based polyHIPEs reinforced with quadruple hydrogen bond functionality", J. Polymer Research, 22, p. 147, (2015).
[16]      Luo, Y., Wang, A. N., Gao, X., "One-pot interfacial polymerization to prepare PolyHIPEs with functional surface", J. Colloid and Polymer Science, 293, pp. 1767–1779, (2015).
[17]      Zhang, N., Zhong, S., Zhou, X., Jiang, W., Wang, T., Fu, J., "Superhydrophobic P (St-DVB) foam prepared by the high internal phase emulsion technique for oil spill recovery", Chemical Engineering J., 298, pp. 117-124, (2016).
[18]      Huš, S., Kolar, M., Krajnc, P., "Separation of heavy metals from water by functionalized glycidyl methacrylate poly (high internal phase emulsions) ", J. Chromatography A, 1437, pp. 168-175, (2016).
[19]      Yin, D., Guan, Y., Li, B., Zhang, B., "Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion", J. Colloids and Surfaces A: Physicochemical and Eng. Aspects, 506, pp. 550-556, (2016).
[20]      Mane, S., "Effect of Porogens (Type and Amount) on PolymerPorosity: A Review", J. Canadian Chemical Transactions, 4(2), pp. 210-225, (2016).
[21]      Li., Y., Gong, C., Zhang, T., Feng, X., Zhou, X., Li, C., "Preparation of PolyHIPE beads and the application in bio-degradation of sulfate containing wastewater, J. Reactive and Functional Polymers", 131, pp. 142-149, (2018).
[22]      Whitely, M., Rivera, G. R., Waldron, C., Mohiuddin, S., Cereceres, S., Sears, N., Ray, N., Hernandezb, E. C., "Porous PolyHIPE microspheres for protein delivery from an injectable bone graft, Int. J. Acta Biomaterialia", 93, pp. 169-179, (2019).
[23]      Rohm, K., Zloczower, I. M., Feke, D., "Poly(HIPE) morphology, crosslink density, and mechanical properties influenced by surfactant concentration and composition", J. Colloids and Surfaces A: Physi. & Eng. Aspects, 583, p. 123913, (2019).
[24]      Mert, H. H., "PolyHIPE composite based‐form stable phase change material for thermal energy storage", Int. J. Energy Research, 44(8), pp. 6583-6594, (2020).