نگاهی بر فناوری تماس‌دهندۀ‌ غشایی الیاف توخالی و جایگاه آن در جداسازی گاز کربن‏دی‏اکسید

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناس ارشد شیمی کاربردی، دانشگاه خوارزمی

2 استادیار شیمی کاربردی، دانشگاه خوارزمی

3 دکترای مهندسی شیمی، پژوهشگر پژوهشگاه صنعت نفت

چکیده

روند رو به افزایش انتشار گازهای آلاینده، به‌ویژه گازهای گلخانه‏ای مانند کربن‏دی‏اکسید (CO2) و نقش آن‌ها در گرمایش کرۀ زمین، تحقیقات بسیار زیادی را برای جداسازی این گازها در پی داشته است. به این منظور، فناوری تماس‌دهندۀ غشایی الیاف توخالی (HFMC)، با داشتن برتری‌هایی نسبت به فرایندهای مرسوم جداسازی، بسیار مورد توجه قرار گرفته است. از موارد برتری‌ این روش می‌توان به مصرف کمتر انرژی، نیازمندی به فضای کم، فراهم‌آوردن سطح تماس بالای انتقال جرم و افزایش مقیاس راحت‏تر،
اشاره کرد. از این رو در مقایسه با روش‏های مرسوم
جداسازی مانند جذب شیمیایی در برج‏های پرشده، جذب سطحی و تقطیر تبریدی، HFMC را می‏توان جایگزینی مناسب برای جداسازی گازهای آلاینده به‌ویژه CO2 که مهم‏ترین گاز گلخانه‏ای است، در نظر گرفت. در این مقاله، ویژگی­های فنی و عوامل مؤثر بر عملکرد جداسازی HFMC به‌همراه نتایج تعدادی از مطالعات محققان خارجی و داخلی بررسی و چند شرکت خارجی فعال
در این زمینه معرفی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

An Insight into Hollow Fiber Membrane Contactor Technology and its Position in Separation of Carbon Dioxide Gas

نویسندگان [English]

  • M. Mohammadi Saadat 1
  • S. Norouzbahari 2
  • M. Esmaeili 3
1 M. Sc. in Applied Chemistry, Kharazmi University
2 Assistant Professor of Applied Chemistry, Kharazmi University
3 Ph. D. in Chemical Engineering, Researcher in Research Institute of Petroleum Industry
چکیده [English]

 
The increasing trend of pollutant gases emission into the atmosphere, particularly greenhouse gases, such as carbon dioxide (CO2) and their role in global warming, has led to numerous investigations to separate these gases. For this purpose, the hollow fiber membrane contactor (HFMC) technology, possessing advantages over traditional separation processes, has drawn a great deal of attention. Some of these advantages include consumption of less energy, low footprint, providing high contact area for mass transfer, and easier scale up. Therefore, compared to traditional separation methods, such as chemical absorption in packed columns, adsorption, and cryogenic distillation, HFMC might be considered as a proper alternative for separation of pollutant gases, more specifically CO2, which is the most important greenhouse gas. In this paper, technical characteristics and effective parameters on separation performance of HFMC along with a number of studies conducted by foreign and internal researchers have been investigated and some active companies involving in this field have been also introduced.

کلیدواژه‌ها [English]

  • Membrane contactor
  • Hollow Fiber
  • Carbon dioxide
  • Separation
[1]      Li, J. R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H. K., Balbuena, P. B., Zhou, H. C., "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks". Coordination Chemistry Reviews, 255, pp. 1791-1823, (2011).
[2]        Qazi, S., Gómez-Coma, L., Albo, J., Druon-Bocquet, S., Irabien, A., Sanchez-Marcano, J., "CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters", Separation and Purification Technology, 233, pp. 115986-116000, (2020).
[3]        Abdolahi-Mansoorkhani, H., Seddigh,i S., "CO2 capture by modified hollow fiber membrane contactor: Numerical study on membrane structure and membrane wettability", Fuel Processing Technology, 209: pp. 106530-106540, (2020).
[4]        Zhang, X., Chuah, C.Y., Dong, P., Cha, Y. H., Bae, T. H., Song, M. K., "Hierarchically Porous Co-MOF-74 Hollow Nanorods for Enhanced Dynamic CO2 Separation", ACS Applied Materials & Interfaces, 10, pp. 43316-43322, (2018).
[5]        knoema, in: https://knoema.com/atlas/Iran/CO2-emissions-per-capita, (2019).
[6]        Song, C., Liu, Q., Ji, N., Deng, S., Zhao, J., Li, Y., Song, Y., Li, H., "Alternative pathways for efficient CO2 capture by hybrid processes—A review", Renewable and Sustainable Energy Reviews, 82, pp. 215-231, (2018).
[7]        Zhao, L., Riensche, E., Menzer, R., Blum, L., Stolten, D., “A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture”, Journal of Membrane Science, 325, pp. 284-294, (2008).
[8]        Chuah, C. Y., Kim, K., Lee, J., Koh, D. Y., Bae, T. H., "CO2 Absorption Using Membrane Contactors: Recent Progress and Future Perspective", Industrial & Engineering Chemistry Research, (2019).
[9]        Kim, S., Scholes, C. A., Heath, D. E., Kentish, S. E., "Gas-liquid membrane contactors for carbon dioxide separation: A review", Chemical Engineering Journal, 411, pp. 128468-128483, (2021).
[10]      Babin, A., Bougie, F., Rodrigue, D., Iliuta, M. C., "A closer look on the development and commercialization of membrane contactors for mass transfer and separation processes", Separation and Purification Technology, 227, pp. 115679-115695, (2019).
[11]      Villeneuve, K., Roizard, D., Remigy, J. C., Iacono, M., Rode, S., "CO2 capture by aqueous ammonia with hollow fiber membrane contactors: Gas phase reactions and performance stability", Separation and Purification Technology, 199, pp. 189-197, (2018).
[12]      Mumford, K. A., Wu, Y., Smith, K. H., Stevens, G. W., "Review of solvent based carbon-dioxide capture technologies", Frontiers of Chemical Science and Engineering, 9, pp. 125-141, (2015).
[13]      Yan, S., He, Q., Zhao, S., Wang, Y., Ai, P., "Biogas upgrading by CO2 removal with a highly selective natural amino acid salt in gas–liquid membrane contactor", Chemical Engineering and Processing: Process Intensification, 85, pp. 125-135, (2014).
[14]      Mansourizadeh, A., Ismail, A. F., "Hollow fiber gas–liquid membrane contactors for acid gas capture: A review", Journal of Hazardous Materials, 171: pp. 38-53, (2009).
[15]      Muhammad, A., Younas, M., Rezakazemi, M., "Quasi-dynamic modeling of dispersion-free extraction of aroma compounds using hollow fiber membrane contactor", Chemical Engineering Research and Design, 127, pp. 52-61, (2017).
[16]      Li, M., Zhu, Z., Zhou, M., Jie, X., Wang, L., Kang, G., Cao, Y., "Removal of CO2 from biogas by membrane contactor using PTFE hollow fibers with smaller diameter", Journal of Membrane Science, 627, pp. 119232-119246, (2021).
[17]      Zhao, S., Feron, P. H. M., Deng, L., Favre, E., Chabanon, E., Yan, S., Hou, J., Chen, V., Qi, H., "Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments", Journal of Membrane Science, 511, pp. 180-206, (2016).
[18]      Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane R. B., Bland A. E., Wright, I., "Progress in carbon dioxide separation and capture: A review", Journal of Environmental Sciences, 20, pp. 14-27, (2008).
[19]      Chuah, C. Y., Kim, K., Lee, J., Koh, D.Y., Bae, T. H., "CO2 Absorption Using Membrane Contactors: Recent Progress and Future Perspective", Industrial & Engineering Chemistry Research, 59, pp. 6773-6794, (2019).
[20]      Julian, H., Sutrisna, P. D., Hakim, A. N., Harsono, H. O., Hugo, Y. A., Wenten, I. G.,"Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation", Polymer-Plastics Technology and Materials, 58, pp. 678-689, (2019).
[21]      Kostyanaya, M., Bazhenov, S., Borisov, I., Plisko, T., Vasilevsky, V., "Surface modified polysulfone hollow fiber membranes for ethane/ethylene separation using gas-liquid membrane contactors with ionic liquid-based absorbent", Fibers, 7, pp. 4-20, (2019).
[22]      Mosadegh-Sedghi, S., Rodrigue, D., Brisson, J., Iliuta, M. C., "Wetting phenomenon in membrane contactors–causes and prevention", Journal of Membrane Science, 452, pp. 332-353, (2014).
[23]      Liu, F., Hashim, N. A., Liu, Y., Abed, M. M., Li, K., "Progress in the production and modification of PVDF membranes", Journal of membrane science, 375, pp. 1-27, (2011).
[24]      Kim, J. F., Jung, J. T., Wang, H. H., Lee, S. Y., Moore, T., Sanguineti, A., Drioli, E., Lee, Y. M., "Microporous PVDF membranes via thermally induced phase separation (TIPS) and stretching methods", Journal of Membrane Science, 509, pp. 94-104, (2016).
[25]      Kim, J. F., Kim, J. H., Lee, Y. M., Drioli, E., "Thermally induced phase separation and electrospinning methods for emerging membrane applications: A review", AIChE Journal, 62, pp. 461-490, (2016).
[26]      Zhao, S., Feron, P. H., Deng, L., Favre, E., Chabanon, E., Yan, S., Hou, J., Chen, V., Qi, H., "Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments", Journal of membrane science, 511, pp. 180-206, (2016).
[27]      Dindore, V. Y., Brilman, D. W. F., Feron, P. H. M., Versteeg, G. F., "CO2 absorption at elevated pressures using a hollow fiber membrane contactor", Journal of Membrane Science, 235, pp. 99-109, (2004).
[28]      Dindore, V. Y., Brilman, D. W. F., Geuzebroek, F. H., Versteeg, G. F., "Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors", Separation and Purification Technology, 40, pp. 133-145, (2004).
[29]      Iliuta, I., Bougie, F., Iliuta, M. C., "CO2 removal by single and mixed amines in a hollow-fiber membrane module—investigation of contactor performance", AIChE Journal, 61, pp. 955-971, (2015).
[30]      Norouzbahari, S., Shahhosseini, S., Ghaemi, A., "CO2 chemical absorption into aqueous solutions of piperazine: modeling of kinetics and mass transfer rate", Journal of Natural Gas Science and Engineering, 26, pp. 1059-1067, (2015).
[31]      Bougie, F., Iliuta, M. C., “Stability of aqueous amine solutions to thermal and oxidative degradation in the absence and the presence of CO2", International Journal of Greenhouse Gas Control, 29, pp. 16-21, (2014).
[32]      Li, Y., Wang, L. A., Zhang, Z., Hu, X., Cheng, Y., Zhong, C., "Carbon Dioxide Absorption from Biogas by Amino Acid Salt Promoted Potassium Carbonate Solutions in a Hollow Fiber Membrane Contactor: A Numerical Study", Energy & Fuels, 32, pp. 3637-3646, (2018).
[33]      Lu, J. G., Lu, C. T., Chen, Y., Gao, L., Zhao, X., Zhang, H., Xu, Z.W., "CO2 capture by membrane absorption coupling process: Application of ionic liquids", Applied Energy, 115, pp. 573-581, (2014).
[34]      Dai, Z., Deng, L., "Membrane absorption using ionic liquid for pre-combustion CO2 capture at elevated pressure and temperature", International Journal of Greenhouse Gas Control, 54, pp. 59-69, (2016).
[35]      Ansaloni, L., Arif, A., Ciftja, A. F., Knuutila, H. K., Deng, L., "Development of membrane contactors using phase change solvents for CO2 capture: material compatibility study", Industrial & Engineering Chemistry Research, 55, pp. 13102-13113, (2016).
[36]      Peyravi, A., Keshavarz, P., Mowla, D., "Experimental investigation on the absorption enhancement of CO2 by various nanofluids in hollow fiber membrane contactors", Energy & Fuels, 29, pp. 8135-8142, (2015).
[37]      Air-liquide, reference document in: https://www.airliquide.com/investors/2018-reference-document, Air Liquid Paris, French, (2018).
[38]      Leroux & Lotz, Leroux & Lotz Technologies, in: http://www.lerouxlotz.com/, Leroux & Lotz Company, (2015).
[39]      Liqui-Cel, M., in: https://multimedia.3m.com/mws/ media/1412485O/3m-liqui-cel-membrane-contactors-liquid-degasgaslc-1096-pdf.pdf, (2017).
[40]      Knudsen, J. N., Andersen, J., Jensen, J. N., Biede, O., "Results from test campaigns at the 1 t/h CO2 post-combustion capture pilot-plant in Esbjerg under the EU FP7 CESAR project", First Post Combustion Capture Conference (PCCC1), pp. 1-2, Abu Dhabi, (2011).