مروری بر روش‌های عمل‌آوری و اصلاح تقویت‌کننده‌های مورد استفاده در چندسازه‌‌های زمینه پلی‌پروپیلن

نوع مقاله : مقاله مروری

نویسندگان

1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات

2 دانشگاه یزد، دانشکده مهندسی نساجی

3 شرکت ملی گاز ایران

چکیده

در سال‌های اخیر پژوهشگران از ساخت چندسازه‌‌های پلی‌پروپیلن با استفاده از انواع مختلفی از تقویت‌کننده‌ها برای افزایش خواص مکانیکی آن‌ها استقبال کرده‌اند. در این مقاله، ابتدا چگونگی افزایش خواص مکانیکی چندسازه‌‌های پلی‌پروپیلن در اثر افزودن انواع مختلفی از تقویت‌کننده‌های ذره‌ای و الیافی با منشأ‌های مصنوعی و طبیعی مرور شده است. در همین راستا مشخص شد که ساخت چندسازه‌‌های پلی‌پروپیلن باعث افزایش استحکام نمونه‌ها و افزایش خواص مکانیکی آن‌ها می‌شود. سپس راه‌های اصلاح سطحی و عمل‌آوری تقویت‌کننده‌ها و به‌ویژه الیاف طبیعی با روش‌های شیمیایی و فیزیکی مطالعه شده است. نتایج نشان‌دهندۀ‌ افزایش چسبندگی سطح تقویت‌کننده‌ها در داخل زمینۀ پلی‌پروپیلن است که منجر به افزایش استحکام و ارتقای خواص مکانیکی چندسازه‌‌های پلی‌پروپیلن شده است. براساس نتایج این مقاله ‌‌می‌توان انتظار داشت که با استفادۀ روزافزون از الیاف طبیعی اصلاح‌شده در چندسازه‌‌های ‌پلی‌پروپیلن و افزودن سایر تقویت‌کننده‌های طبیعی یا مصنوعی به ‌آن‌ها که منجر به شکل‌گیری چندسازه‌‌های هیبریدی می‌شود، بخش زیادی از پژوهش‌های آینده در این راستا متمرکز شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

A Review of Processing Methods and Modification of Reinforcements Used in Polypropylene Composites

چکیده [English]

The fabrication of polypropylene composites using various types of reinforcements to improve the mechanical properties has received much attention in recent years. In this paper, enhancing the mechanical properties of polypropylene composites by adding different classes of natural and synthetic particle and fiber reinforcements were reviewed. Accordingly, it was found that the fabrication of polypropylene composites leads to an increase either in the strength of samples and corresponding mechanical properties. Moreover, surface modification and processing reinforcements, especially natural fibers via chemical and physical methods were studied. The results show an increase in the adhesion of reinforcements surface inside the polypropylene, which results in strength enhancement and improving the mechanical properties of polypropylene composites. The evidence from this study points towards the idea that the increased use of modified natural fibers in polylropylene composites and those natural or synthetic reinforcements which form hybrid composites provide promising research topics in the future.
 

کلیدواژه‌ها [English]

  • Composite
  • polypropylene
  • Surface modification
  • Reinforcement
[1]        McIntyre, J. E. Ed., Synthetic fibres: nylon, polyester, acrylic, polyolefin. Taylor & Francis US., (2005).
[2]        Borah, J. S., Kim, D. S., "Recent development in thermoplastic/wood composites and nanocomposites: A review", Korean J. Chem. Eng., 33, pp. 3035–3049, (2016).
[3]        Jaleh, B., Etivand, E. S., Mohazzab, B. F., Nasrollahzadeh, M., Varma, R. S., "Improving wettability: Deposition of TiO2 nanoparticles on the O2 plasma activated polypropylene membrane", Int. J. Mol. Sci., 20, p. 3309, (2019).
[4]        Ghasemi, F. A., Niyaraki, M. N., Ghasemi, I., Daneshpayeh, S., "Predicting the tensile strength and elongation at break of PP/graphene/glass fiber/EPDM nanocomposites using response surface methodology", Mech. Adv. Mater. Struct., pp. 1-9, (2019).
[5]        Tang, W., Han, J., Zhang, S., Sun, J., Li, H., Gu, X., "Synthesis of 4A zeolite containing la from kaolinite and its effect on the flammability of polypropylene", Polym. Compos., 39, pp. 3461–3471, (2018).
[6]        Shah, A. ur R., Prabhakar, M. N., Saleem, M., Song, J. Il, "Development of biowaste encapsulated polypropylene composites: Thermal, optical, dielectric, flame retardant, mechanical, and morphological properties", Polym. Compos., 38, pp. 236–243, (2017).
[7]        Xin, Z. X., Zhang, Z. X., Pal, K., Byeon, J. U., Lee, S. H., Kim, J. K., "Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend", Mater. Des., 31, pp. 589–593, (2010).
[8]        Zhang, D., He, M., Qin, S., Yu, J., "Effect of fiber length and dispersion on properties of long glass fiber reinforced thermoplastic composites based on poly (butylene terephthalate)", RSC Adv., 7, pp. 15439–15454, (2017).
[9]        Ornaghi, H. L., Bolner, Fiorio, A. S., Zattera, R., A. J., Amico, S. C., "Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding", J. Appl. Polym. Sci., 118, pp. 887–896, (2010).
[10]      Yashas Gowda, T. G., Sanjay, M. R., Subrahmanya Bhat, K., Madhu, P., Senthamaraikannan, P., Yogesha, B., "Polymer matrix-natural fiber composites: An overview", Cogent Eng., 5, (2018).
[11]      Kumar, A., Sharma, K., Dixit, A. R., "A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene", Carbon Lett., pp. 1-17, (2020).
[12]      Hemath, M., Mavinkere Rangappa, S., Kushvaha, V., Dhakal, H. N., Siengchin, S., "A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites", Polym. Compos., 41, pp. 3940–3965, (2020).
[13]      Arumugam, S., Kandasamy, J., Md Shah, A. U., Hameed Sultan, M. T., Safri, S. N. A., Abdul Majid, M. S., Basri, A. A. Mustapha, F., "Investigations on the Mechanical properties of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composite scaffolds for bone fracture fixation applications", Polymers (Basel)., 12, pp. 1–19, (2020).
[14]      Kulkarni, P., Mali, K. D., Singh, S., "An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites", Compos. Part A Appl. Sci. Manuf., 137, p. 106013, (2020).
[15]      Fu, S., Yu, B., Tang, W., Fan, M., Chen, F., Fu, Q., "Mechanical properties of polypropylene composites reinforced by hydrolyzed and microfibrillated Kevlar fibers", Compos. Sci. Technol., 163, pp. 141–150, (2018).
[16]      Tang, G., Gu, B., Hu, X., Wei, G., Claramunt, C., Liu, C., "Mechanical properties and characteristic of surface treated bamboo fiber reinforced PP/PS blends", Surf. Interface Anal., 50, pp. 603–607, (2018).
[17]      Bozkurt, Ö. Y., Erkliğ, A., Bulut, M., "Hybridization effects on charpy impact behavior of basalt/aramid fiber reinforced hybrid composite laminates", Polym. Compos., 39, pp. 467–475, (2018).
[18]      Correa-Aguirre, J. P., Luna-Vera, F., Caicedo, C., Vera-Mondragón, B., Hidalgo-Salazar, M. A., "The effects of reprocessing and fiber treatments on the properties of polypropylene-sugarcane bagasse biocomposites", Polymers (Basel)., 12, p. 1440, (2020).
[19]      Pak, S., Park, S., Song, Y. S., Lee, D., "Micromechanical and dynamic mechanical analyses for characterizing improved interfacial strength of maleic anhydride compatibilized basalt fiber/polypropylene composites", Compos. Struct., 193, pp. 73–79, (2018).
[20]      Liang, C., "Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity", J. Mater. Chem. C, 7, pp. 2725–2733, (2019).
[21]      Sinha, A. K., Narang, H. K., Bhattacharya, S., "Mechanical properties of hybrid polymer composites: a review", J. Brazilian Soc. Mech. Sci. Eng., 42, pp.1-13, (2020).
[22]      Balan, A. K., Mottakkunnu Parambil, S., Vakyath, S., Thulissery Velayudhan, J., Naduparambath, S., Etathil, P., "Coconut shell powder reinforced thermoplastic polyurethane/natural rubber blendcomposites: effect of silane coupling agents on the mechanical and thermal properties of the composites", J. Mater. Sci., 52, pp. 6712–6725, (2017).
[23]      Sahin, M., "Tailoring the interfaces in glass fiber-reinforced photopolymer composites", Polymer (Guildf)., 141, pp. 221–231, (2018).
[24]      Wang, S., Ma, J., Feng, X., Cheng, J., Ma, X., Zhao, Y., Chen, L., "An effective surface modification of UHMWPE fiber for improving the interfacial adhesion of epoxy resin composites", Polym. Compos., 41, pp. 1614–1623, (2020).
[25]      Gatenholm, P., Bertilsson, H., Mathiasson, A., "The effect of chemical composition of interphase on dispersion of cellulose fibers in polymers. I. PVC‐coated cellulose in polystyrene", J. Appl. Polym. Sci., 49, pp. 197–208, (1993).
[26]      Keller, A., "Compounding and mechanical properties of biodegradable hemp fibre composites", Compos. Sci. Technol., 63, pp. 1307–1316, (2003).
[27]      Rana, A. K., Mandal, A., Bandyopadhyay, S., "Short jute fiber reinforced polypropylene composites: Effect of compatibiliser, impact modifier and fiber loading", Compos. Sci. Technol., 63, pp. 801–806, (2003).
[28]      Rouison, D., Sain, M., Couturier, M., "Resin transfer molding of natural fiber reinforced composites: Cure simulation", Compos. Sci. Technol., 64, pp. 629–644, (2004).
[29]      Mohanty, A. K., Wibowo, A., Misra, M., Drzal, L. T., "Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites", Compos. Part A Appl. Sci. Manuf., 35, pp. 363–370, (2004).
[30]      Baley, C., "Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase", Compos. - Part A Appl. Sci. Manuf., 33, pp. 939–948, (2002).
[31]      Van De Velde, K., Kiekens, P., "Thermal degradation of flax: The determination of kinetic parameters with thermogravimetric analysis", J. Appl. Polym. Sci., 83, pp. 2634–2643, (2002).
[32]      Wallenberger, F. T., Weston, N., Natural fibers plastics and composites. Springer Science & Business Media, (2003).
[33]      Pervaiz, M., Sain, M. M., "Carbon storage potential in natural fiber composites", Resour. Conserv. Recycl., 39, pp. 325–340, (2003).
[34]      Wu, H., Lin, X., Zhou, A., "A review of mechanical properties of fibre reinforced concrete at elevated temperatures", Cem. Concr. Res., 135, p. 106117, (2020).
[35]      Mohanty, A. K., Misra, M., Drzal, L. T., "Surface modifications of natural fibers and performance of the resulting biocomposites: An overview", Compos. Interfaces, 8, pp. 313–343, (2001).
[36]      Saechtling, H., Woebcken, W., Haim, J., Hyatt, D., "International Plastics Handbook: for the technologist, engineer, and user. Hanser, (1995).
[37]      Fiore, V., Scalici, T., Di Bella, G., V, alenza, A., "A review on basalt fibre and its composites", Compos. Part B Eng., 74, pp. 74–94, (2015).
[38]      Militký, J., Kovačič, V., Rubnerová, J., "Influence of thermal treatment on tensile failure of basalt fibers", Eng. Fract. Mech., 69, pp. 1025–1033, (2002).
[39]      (Rik) Brouwer, W. D., "Natural Fibre Composites in Structural Components: Alternative Applications", Altern. Appl. Sisal Henequen, pp. 75–82, (2000).
[40]      Bisanda, E. T. N., Ansell, M. P., "Properties of sisal-CNSL composites", J. Mater. Sci., 27, pp. 1690–1700, (1992).
[41]      Safiuddin, M., Yakhlaf, M., Soudki, K. A., "Key mechanical properties and microstructure of carbon fibre reinforced self-consolidating concrete", Constr. Build. Mater., 164, pp. 477–488, (2018).
[42]      Shirvanimoghaddam, K., Hamim, S. U., Akbari, M. K., Fakhrhoseini, S. M., Khayyam, H., Pakseresht, A. H., Ghasali, E., Zabet, M., Munir, K. S., Jia, S., Davim, J. P., "Carbon fiber reinforced metal matrix composites: Fabrication processes and properties", Compos. Part A Appl. Sci. Manuf., 92, pp. 70–96, (2017).
[43]      Ozawa, M., Morimoto, H., "Effects of various fibres on high-temperature spalling in highperformance concrete", Constr. Build. Mater., 71, pp. 83–92, (2014).
[44]      Pakravan, H. R., Latifi, M., Jamshidi, M., "Hybrid short fiber reinforcement system in concrete: A review", Constr. Build. Mater., 142, pp. 280–294, (2017).
[45]      Bos, H. L., Van Den Oever, M. J. A. and Peters, O. C. J. J., "Tensile and compressive properties of flax fibres for natural fibre reinforced composites", J. Mater. Sci., 37, pp. 1683–1692, (2002).
[46]      Lumingkewas, R. H., Husen, A., Andrianus, R., "Effect of fibers length and fibers content on the splitting tensile strength of coconut fibers reinforced concrete composites", Key Eng. Mater., 748, pp. 311–315, (2017).
[47]      Eichhorn, S. J., Sirichaisit, J., Young, R. J., "Deformation mechanisms in cellulose fibres, paper and wood", J. Mater. Sci., 36, pp. 3129–3135, (2001).
[48]      Kizilkanat, A. B., Kabay, N., Akyüncü, V., Chowdhury, S., Akça, A. H., "Mechanical properties and fracture behavior of basalt and glass fiber reinforced concrete: An experimental study", Constr. Build. Mater., 100, pp. 218–224, (2015).
[49]      Liu, S., Zhu, D., Ou, Y., Yao, Y., Shi, C., "Impact response of basalt textile reinforced concrete subjected to different velocities and temperatures", Constr. Build. Mater., 175, pp. 381–391, (2018).
[50]      Behera, P., Baheti, V., Militky, J., Louda, P., "Elevated temperature properties of basalt microfibril filled geopolymer composites", Constr. Build. Mater., 163, pp. 850–860, (2018).
[51]      Kalaj, M., Denny, M. S., Bentz, K. C., Palomba, J. M., Cohen, S. M., "Nylon–MOF Composites through Postsynthetic Polymerization", Angew. Chemie - Int. Ed., 58, pp. 2336–2340, (2019).
[52]      Arbelaiz, A., Fernández, G., Orue, A., "The effect of montmorillonite modification and the use of coupling agent on mechanical properties of polypropylene–clay nanocomposites", Polym. Polym. Compos., p. 0967391120930613, (2020).
[53]      Wang, S., Zhong, J., Gu, Y., Li, G., Cui, J., "Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites", Polym. Compos., 41, pp. 4181–4191, (2020).
[54]      Świetlicki, M., Chocyk, D., Klepka, T., Prószyński, A., Kwaśniewska, A., Borc, J., Gładyszewski, G., "The structure and mechanical properties of the surface layer of polypropylene polymers with talc additions", Materials (Basel)., 13, p. 698, (2020).
[55]      Castillo, L. A., Barbosa, S. E., "Influence of processing and particle morphology on final properties of polypropylene/talc nanocomposites", Polym. Compos., 41, pp. 3170–3183, (2020).
[56]      Yousefzadeh, Kashfi, S. M., Kahhal, Ansari-asl, P. A., “An Experimental Investigation on Tensile and Impact Properties of Bagasse/Polypropylene Natural Composite,” Amirkabir Journal of Mechanical Engineering., Vol. 52, no. 8, pp. 81-90, In Persian, (2019), doi: 10.22060/MEJ.2019.15715.6197.
[57]      Awad, S. A., Khalaf, E. M., "Investigation of improvement of properties of polypropylene modified by nano silica composites", Compos. Commun., 12, pp. 59–63, (2019).
[58]      Zolfaghari, S., Paydayesh, A., Jafari, M., "Mechanical and Thermal Properties of Polypropylene/Silica Aerogel Composites", J. Macromol. Sci. Part B Phys., 58, pp. 305–316, (2019).
[59]      Kordani, N., Fereidoon, A., Sadoddin, S. Ghorbanzadeh, A. M., "Investigation of Mechanical and Thermal Behavior of Reinforced Polypropylene with Single Walled Carbon Nanotube", Aerosp. Mech. J., 6, pp. 1–10, (2010).
[60]      Zhou, S., Hrymak, A. N., Kamal, M. R., "Electrical, thermal, and mechanical properties of polypropylene/ multiwalled carbon nanotube micromoldings", Polym. Compos., 41, pp. 1507–1520, (2020).
[61]      Kiss, P., Stadlbauer, W., Burgstaller, C., Archodoulaki, V. M., "Development of highperformance glass fibre-polypropylene composite laminates: Effect of fibre sizing type and coupling agent concentration on mechanical properties", Compos. Part A Appl. Sci. Manuf., 138, p. 106056, (2020).
[62]      Nobe, R., Qiu, J., Kudo, M., Zhang, G., "Morphology and mechanical investigation of microcellular injection molded carbon fiber reinforced polypropylene composite foams", Polym. Eng. Sci., 60, pp. 1507–1519, (2020).
[63]      Wang, Y., Cheng, L., Cui, X., Guo, W., "Crystallization behavior and properties of glass fiber reinforced polypropylene composites", Polymers (Basel)., 11, p. 1198, (2019).
[64]      Unterweger, C., Mayrhofer, T., Piana, F., Duchoslav, J., Stifter, D., Poitzsch, C., Fürst, C., "Impact of fiber length and fiber content on the mechanical properties and electrical conductivity of short carbon fiber reinforced polypropylene composites", Compos. Sci. Technol., 188, p. 107998, (2020).
[65]      Thwe, M. M., Liao, K., "Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites", Compos. Sci. Technol., 63, pp. 375–387, (2003).
[66]      Chow, W. S., Bakar, A. A., Ishak, Z. M., Karger-Kocsis, J. and Ishiaku, U. S., "Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites." Eur. Polym. J., 41, pp. 687-696, (2005).‏
[67]      Roohani, M., Kord, B., “Dynamic mechanical and thermal properties of bagasse/ glass fiber/ polypropylene hybrid composites,” Iranian journal of wood and paper industries., Vol. 7, No. 1, pp. 103-114, In Persian, (2016).
[68]      Payganeh, G., Ashnaie Ghasemi, F., Afshari, P., “Experimental study of propylene/waste rubber/Nano clay Nano composites,” Iranian Journal of Mechanical Engineering., Vol. 15, no. 1, pp. 82-99, In Persian, (2013).
[69]      Liu, Y., Zhang, S., Wang, X., Pan, Y., Zhang, F., Huang, J., "Mechanical and aging resistance properties of polypropylene (PP) reinforced with nanocellulose/attapulgite composites (NCC/AT)", Compos. Interfaces, 27, pp. 73–85, (2020).
[70]      Zhu, B., Li, W., Song, J., Wang, J., "Structure and Properties of Polypropylene/Polyolefin Elastomer/ Organic Montmorillonite Nanocomposites", J. Macromol. Sci. Part B Phys., 58, pp. 73–87, (2019).
[71]      Kalagar, M., Marzban Moridani, E., “Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review,” basparesh., Vol. 3, No. 3, pp. 76-87, In Persian, (2013), doi: 10.22063/BASPARESH.2013.1006.
[72]      Naik, J. B., Mishra, S., "The compatibilizing effect of maleic anhydride on swelling properties of plant-fiber-reinforced polystyrene composites", Polym.-Plast. Technol. Eng., 45, pp. 923–927, (2006).
[73]      Joseph, P. V., Joseph, K., Thomas, S., "Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites", Compos. Sci. Technol., 59, pp. 1625–1640, (1999).
[74]      Madsen, B., Lilholt, H., "Physical and mechanical properties of unidirectional plant fibre composites-an evaluation of the influence of porosity", Compos. Sci. Technol., 63, pp. 1265–1272, (2003).
[75]      Mwaikambo, L. Y., Martuscelli, E., Avella, M., "Kapok/cotton fabric polypropylene composites", Polym. Test., 19, pp. 905–918, (2000).
[76]      Pickering, K. L., Ji, C., "The effect of poly[methylene(polyphenyl isocyanate)] and maleated polypropylene coupling agents on New Zealand radiata pine fiber-polypropylene composites", J. Reinf. Plast. Compos., 23, pp. 2011–2024, (2004).
[77]      Hambali, A., Sapuan, M. S., Ismail, N., Nukman, Y., "Material selection of polymeric composite automotive bumper beam using analytical hierarchy process", J. Cent. South Univ. Technol., 17, pp. 244–256, (2010).
[78]      Chandekar, H., Chaudhari, V., Waigaonkar, S., Mascarenhas, A., "Effect of chemical treatment on mechanical properties and water diffusion characteristics of jute-polypropylene composites", Polym. Compos., 41, pp. 1447–1461, (2020).
[79]      Liu, X., Hao, S. J., Cui, Y. H., Chen, H. Y., "Improvement on the interfacial compatibility of jute fiber-reinforced polypropylene composites by different surface treatments", J. Ind. Text., 49, pp. 906–922, (2020).
[80]      Ray, D., Sarkar, B. K., Rana, A. K., Bose, N. R., "Effect of alkali treated jute fibres on composite properties", Bull. Mater. Sci., 24, pp. 129–135, (2001).
[81]      Agrawal, R., Saxena, N. S., Sharma, K. B., Thomas, S., Sreekala, M. S., "Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites", Mater. Sci. Eng. A, 277, pp. 77–82, (2000).
[82]      Jähn, A., Schröder, M. W., Füting, M., Schenzel, K., Diepenbrock, W., "Characterization of alkali treated flax fibres by means of FT Raman spectroscopy and environmental scanning electron microscopy", Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 58, pp. 2271–2279, (2002).
[83]      Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K., Tripathy, S.S., "Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites", Compos. Sci. Technol., 63, pp. 1377–1385, (2003).
[84]      Hill, C. A. S., Khalil, H. P. S. A., Hale, M. D., "A study of the potential of acetylation to improve the properties of plant fibres", Ind. Crops Prod., 8, pp. 53–63, (1998).
[85]      Sreekala, M. S., Thomas, S., "Effect of fibre surface modification on water-sorption characteristics of oil palm fibres", Compos. Sci. Technol., 63, pp. 861–869, (2003).
[86]      Manikandan Nair, K. C., Thomas, S., Groeninckx, G., "Thermal and dynamic mechanical analysis of polystyrene composites reinforced with short sisal fibres", Compos. Sci. Technol., 61, pp. 2519–2529, (2001).
[87]      Van de Weyenberg, I., Ivens, J., De Coster, A., Kino, B., Baetens, E., Verpoest, I., "Influence of processing and chemical treatment of flax fibres on their composites", Compos. Sci. Technol., 63, pp. 1241–1246, (2003).
[88]      Mohd Ishak, Z. A., Ariffin, A., Senawi, R., "Effects of hygrothermal aging and a silane coupling agent on the tensile properties of injection molded short glass fiber reinforced poly(butylene terephthalate) composites", Eur. Polym. J., 37, pp. 1635–1647, (2001).
[89]      Lee, G.-W., "Effects of surface modification on the resin-transfer moulding (RTM) of glassfibre/ unsaturated-polyester composites", Compos. Sci. Technol., 62, pp. 9–16, (2002).
[90]      Kim, S. H., Kim, E. S., Choi, K., Cho, J. K., Sun, H., Yoo, J. W., Park, I. K., Lee, Y., Choi, H. R., Kim, T., Suhr, J., "Rheological and mechanical properties of polypropylene composites containing microfibrillated cellulose (MFC) with improved compatibility through surface silylation", Cellulose, 26, pp. 1085–1097, (2019).
[91]      Valadez-Gonzalez, A., Cervantes-Uc, J. M., Olayo, R., Herrera-Franco, P. J., "Effect of fiber surface treatment on the fiber-matrix bond strength of natural fiber reinforced composites", Compos. Part B Eng., 30, pp. 309–320, (1999).
[92]      Joseph, K., Thomas, S., Pavithran, C., "Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites", Polymer (Guildf)., 37, pp. 5139– 5149, (1996).
[93]      Sreekala, M. S., Kumaran, M. G., Joseph, S., Jacob, M., Thomas, S., "Oil palm fibre reinforced phenol formaldehyde composites: influence of fibre surface modifications on the mechanical performance", Appl. Compos. Mater., 7, pp. 295–329, (2000).
[94]      Joseph, P. V., Joseph, K., Thomas, S., Pillai, C. K. S., Prasad, V. S., Groeninckx, G., Sarkissova, M., "The thermal and crystallisation studies of short sisal fibre reinforced polypropylene composites", Compos. Part A Appl. Sci. Manuf., 34, pp. 253–266, (2003).
[95]      Tian, H., Yao, Y., Wang, C., Jv, R., Ge, X., Xiang, A., "Essential work of fracture analysis for surface modified carbon fiber/polypropylene composites with different interfacial adhesion", Polym. Compos., 41, pp. 3541–3551, (2020).
[96]      Thwe, M. M., Liao, K., "Environmental effects on bamboo-glass/polypropylene hybrid composites", J. Mater. Sci., 38, pp. 363–376, (2003).
[97]      Mohanty, S., Nayak, S. K., Verma, S. K., Tripathy, S. S., "Effect of MAPP as a Coupling Agent on the Performance of Jute-PP Composites", J. Reinf. Plast. Compos., 23, pp. 625–637, (2004).
[98]      Golparvar, M., Fasihi, M., “Investigation of mechanical properties of polypropylene-based hybrid nanocomposites using experimental design,” Scientific Information Database., Vol. 5, No. 3, pp. 307-314, In Persian, (2018).
[99]      Khademi Eslam, H., Yousefnia, Z., Ghasemi, E., Talaeipoor, T.,“Investigating the mechanical properties of wood flour/ polypropylene/ nanoclay composite,” Iranian journal of wood and paper science research., Vol. 28, No. 1, pp. 153-168, In Persian, (2013). doi: 10.22092/IJWPR.2013.3112
[100]    Botev, M., Betchev, H., Bikiaris, D., Panayiotou, C., "Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene", J. Appl. Polym. Sci., 74, pp. 523– 531, (1999).
[101]    Matkó, S., Anna, P., Marosi, G., Szep, A., Keszei, S., Czigány, T., Pölöskei, K., "Use of Reactive Surfactants in Basalt Fiber Reinforced Polypropylene Composites", Macromol. Symp., 202, pp. 255–268, (2003).
[102]    Kuciel, S., Kufel, A., "Novel hybrid composites based on polypropylene with basalt/carbon fiber", Polimery, 63, pp. 387-390 (2018).
[103]    Kalia, I. K., Susheel, Kaith, B. S., "Cellulose fibers: bio-and nano-polymer composites: green chemistry and technology", Springer Science & Business Media., (2011).
[104]    Kim, T. J., Lee, Y. M., Im, S. S., "The preparation and characteristics of low-density polyethylene composites containing cellulose treated with cellulase", Polym. Compos., 18, pp. 273–282, (1997).
[105]    Zhou, Z., Liu, X., Hu, B., Wang, J., Xin, D., Wang, Z., Qiu, Y., "Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment", Surf. Coatings Technol., 205, pp. 4205– 4210, (2011).
[106]    Hill, C. A. S., Norton, A., Newman, G., "The water vapor sorption behavior of natural fibers", J. Appl. Polym. Sci., 112, pp. 1524–1537, (2009).
[107]    Pommet, M., Juntaro, J., Heng, J. Y., Mantalaris, A., Lee, A. F., Wilson, K., Kalinka, G., Shaffer, M. S. and Bismarck, A., "Surface modification of natural fibers using bacteria: Depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites", Biomacromolecules, 9, pp. 1643–1651, (2008).
[108]    Wielage, B., Lampke, T., Marx, G., Nestler, K., Starke, D., "Thermogravimetric and differential scanning calorimetric analysis of natural fibres and polypropylene", Thermochim. Acta, 337, pp. 169–177, (1999).
[109]    Bismarck, A., Kumru, M. E., ürgen Springer, J., "Influence of oxygen plasma treatment of PAN-based carbon fibers on their electrokinetic and wetting properties", J. Colloid Interface Sci., 210, pp. 60–72, (1999).
[110]    Ho, K. K. C., Lee, A. F., Lamoriniere, S., Bismarck, A., "Continuous atmospheric plasma fluorination of carbon fibres", Compos. Part A Appl. Sci. Manuf., 39, pp. 364–373, (2008).
[111]    Morales, J., Olayo, M. G., Cruz, G. J., Herrera-Franco, P., Olayo, R., "Plasma modification of cellulose fibers for composite materials", J. Appl. Polym. Sci., 101, pp. 3821–3828, (2006).
[112]    Bismarck A, S. J., "Wettability of Materials: Plasma Treatment Effects, Encyclopedia of Surface and Colloid Science", Somasundaran, Ed. Taylor & Francis, pp. 6592–6610, (2006).
[113]    Kale, K. H., Desaia, A. N., "Atmospheric pressure plasma treatment of textiles using nonpolymerising gases", Indian J. Fibre Text. Res., 36, pp. 289–299, (2011).
[114]    Schütze, A., Jeong, J. Y., Babayan, S. E., Park, J., Selwyn, G. S., Hicks, R. F., "The atmosphericpressure plasma jet: A review and comparison to other plasma sources", IEEE Trans. Plasma Sci., 26, pp. 1685–1694, (1998).
[115]    Ragoubi, M., Bienaimé, D., Molina, S., George, B., Merlin, A., "Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof", Ind. Crops Prod., 31, pp. 344–349, (2010).
[116]    Kaith, B. S., Kalia, S., "Graft copolymerization of MMA onto flax under different reaction conditions: A comparative study", Express Polym. Lett., 2, pp. 93–100, (2008).
[117]    Podgorski, L., Chevet, B., Onic, L., Merlin, A., "Modification of wood wettability by plasma and corona treatments", Int. J. Adhes. Adhes., 20, pp. 103–111, (2000).
[118]    Baltazar-Y-Jimenez, A., Bismarck, A., "Surface modification of lignocellulosic fibres in atmospheric air pressure plasma", Green Chem., 9, pp. 1057–1066, (2007).
[119]    Baltazar-y-Jimenez, A., Juntaro, J., Bismarck, A., "Effect of atmospheric air pressure plasma treatment on the thermal behaviour of natural fibres and dynamical mechanical properties of randomly-oriented short fibre composites", J. Biobased Mater. Bioenergy, 2, pp. 264– 272, (2008).
[120]    Yuan, X., Jayaraman, K., Bhattacharyya, D., "Effects of plasma treatment in enhancing the performance of woodfibre-polypropylene composites", Compos. Part A Appl. Sci. Manuf., 35, pp. 1363–1374, (2004).
[121]    Yuan, D. B., Xiaowen, Krishnan Jayaraman, "Mechanical properties of plasma-treated sisal fibre-reinforced polypropylene composites." J. Adhes. Sci. Technol., 18, pp.1027-1045, (2004).
[122]    Marais, S., Gouanvé, F., Bonnesoeur, A., Grenet, J., Poncin-Epaillard, F., Morvan, C., Métayer, M. "Unsaturated polyester composites reinforced with flax fibers: Effect of cold plasma and autoclave treatments on mechanical and permeation properties", Compos. Part A Appl. Sci. Manuf., 36, pp. 975–986, (2005).
[123]    Sinha, E., Panigrahi, S., "Effect of plasma treatment on structure, wettability of jute fiber and flexural strength of its composite", J. Compos. Mater., 43, pp. 1791–1802, (2009).
[124]    Shenton, M. J., Stevens, G. C., "Surface modification of polymer surfaces: Atmospheric plasma versus vacuum plasma treatments", J. Phys. D. Appl. Phys., 34, pp. 2761–2768, (2001).
[125]    Baltazar-y-Jimenez, A., Bistritz, M., Schulz, E., Bismarck, A., "Atmospheric air pressure plasma treatment of lignocellulosic fibres: Impact on mechanical properties and adhesion to cellulose acetate butyrate", Compos. Sci. Technol., 68, pp. 215–227, (2008).
[126]    Kan, C. W., Yuen, C. W. M., "Influence of low temperature plasma treatment on the properties of tencel and viscose rayon fibers", IEEE Trans. Plasma Sci., 37, pp. 1615– 1619, (2009).
[127]    Baghery Borooj, M., Mousavi Shoushtari, A., Haji, A., “The influence of plasma treatment on the surface characterization and mechanical properties of the carbon fiber used in composites,” The first national conference on the use of composites in the manufacturing industry, Tehran, In Persian, (2016).
[128]    John, M. J., Anandjiwala, R. D., "Recent developments in chemical modification and characterization of natural fiber-reinforced composites", Polym. Compos., 29, pp. 187–207, (2008).
[129]    Li, X., Tabil, L. G., Panigrahi, S., "Chemical treatments of natural fiber for use in natural fiberreinforced composites: A review", J. Polym. Environ., 15, pp. 25–33, (2007).
[130]    Lee, K. -Y., Delille, A., Bismarck, A., "Greener Surface Treatments of Natural Fibres for the Production of Renewable Composite Materials", Cellul. Fibers Bio- Nano-Polymer Compos., pp. 155–178, (2011).
[131]    Noeske, M., Degenhardt, J., Strudthoff, S., Lommatzsch, U., "Plasma jet treatment of five polymers at atmospheric pressure: Surface modifications and the relevance for adhesion", Int. J. Adhes. Adhes., 24, pp. 171–177, (2004).