ارزیابی کارایی مواد متخلخل در انتقال حرارت اجباری: وضعیت حاضر و چالش‌های پیش رو

نویسندگان

دانشگاه تربیت مدرس

چکیده

در صنعت برای افزایش سطح انتقال حرارت غالباً از پره­ها استفاده می­شود؛ اما در برخی موارد به‌دلیل محدودیت در فضا و شرایط عملیاتی، دارای بازدهی محدودی است. با توجه به توانایی محیط متخلخل در افزایش بازدهی حرارتی، از راه افزایش سطح تبادل انرژی و تغییر در گرادیان سرعت، حضور مواد متخلخل به‌عنوان راهکاری نوین در افزایش انتقال حرارت مورد توجه قرار گرفته است. در این پژوهش با هدف ارزیابی امکان استفاده از مواد متخلخل در کاربردهای صنعتی، ضمن بررسی آخرین مطالعات، عوامل مؤثر بر انتقال حرارت (عدد ناسلت (Nu)) در حضور این دسته از مواد (آرایش، هدایت حرارتی، گرادیان حفره‌ها، درصد تخلخل، تراوایی و عدد دارسی، ضخامت، سرعت سیال و حضور چشمۀ حرارتی) ارزیابی شده‌اند. آرایش‌های مختلف بررسی‌شده در دو دستۀ جزئی و کاملاً متخلخل تقسیم­بندی می­شوند؛ در میان آرایش­های بررسی‌شده، آرایش کاملاً متخلخل غالباً بالاترین مقدار افزایش در میزان انرژی تبادل یافته و افت فشار را از خود نشان داده است. با توجه به افزایش افت فشار ضمن حضور محیط متخلخل، معیاری برای ارزیابی آرایش­های مختلف گزارش شده است. در پایان به محدودیت­ها و چالش­های پیش رو در استفاده از این مواد پرداخته شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Porous Materials Performance on Forced Heat Transfer: Current Conditions and Future Challenges

نویسندگان [English]

  • S. Alihosseini
  • A. Jafari
Tarbiat Modares University
چکیده [English]

Expanded surfaces are considered as the common way to heat transfer increment in the industry, but due to their operating conditions and lack of footprint, their use in some situations is limited. Because of its ability in thermal efficiency increment using increasing available area and change in velocity gradient, the porous medium has been considered as a novel solution in heat transfer increment. During this investigation the effective parameters on heat transfer (Nusselt number (Nu)) in the presence of porous medium (configuration, thermal conductivity, pore gradient, porosity, permeability and Darcy number (Da), thickness, fluid velocity, and heat source) were studied. The studied configurations can be classified in partial and fully porous categories. Among the investigated papers, the fully filled configuration usually has shown the maximum exchanged energy and pressure drop. Because using a porous medium leads to pressure drop increase, an index was reported to compare between different configuration can be applied. Finally, limitations and challenges in this field were investigated.

کلیدواژه‌ها [English]

  • Porous medium
  • porosity
  • heat transfer
  • Pressure drop
  • Nusselt Number
  • darcy number
[1]        Flynn, A. M., Akashige, T., Theodore, L., "Kern's Process Heat Transfer", John Wiley & Sons, New York, 2nd. Edition, pp. 1-84, (2019).
[2]        Cao, E., "Heat transfer in process engineering", McGraw-Hill, New York, 1st. Edition, pp. 79-250, (2010).
[3]        Al-Sumaily, G. F., Sheridan, J., Thompson, M. C., "Analysis of forced convection heat transfer from a circular cylinder embedded in a porous medium", International journal of thermal sciences, 51:
pp. 121-131, (2012).
[4]        Al-Salem, K., Oztop, H. F., Kiwan, S., "Effects of porosity and thickness of porous sheets on heat transfer enhancement in a cross flow over heated cylinder", International communications in heat and mass transfer, 38: pp. 1279-1282, (2011).
[5]        Huang, Z., Nakayama, A., Yang, K., Yang, C., Liu, W., "Enhancing heat transfer in the core flow by using porous medium insert in a tube", International Journal of Heat and Mass Transfer, 53:
pp. 1164-1174, (2010).
[6]        Nojoomizadeh, M., Karimipour, A., "The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano-tubes suspended in oil (MWCNT/Oil nano-fluid) in a microchannel filled with a porous medium", Physica E: Low-dimensional Systems and Nanostructures, 84:
pp. 423-433, (2016).
[7]        Xu, H. J., Xing, Z. B., Wang, F., Cheng, Z., "Review on heat conduction, heat convection, thermal radiation and phase change heat transfer of nanofluids in porous media: Fundamentals and applications", Chemical Engineering Science, 195: pp. 462-483, (2019).
[8]        Mahmoudi, Y., Maerefat, M., "Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition", International Journal of Thermal Sciences, 50:
pp. 2386-2401, (2011).
[9]        Maerefat, M., Mahmoudi, S. Y., Mazaheri, K., "Numerical simulation of forced convection enhancement in a pipe by porous inserts", Heat Transfer Engineering, 32: pp. 45-56, (2011).
[10]      Mohamad, A. A., "Heat transfer enhancement in heat exchangers fitted with porous media. Part I: constant wall temperature", International Journal of Thermal Sciences 42: pp. 385-395, (2003).
[11]      Mahmoudi, Y., Karimi, N., "Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition", International Journal of Heat and Mass Transfer, 68: pp. 161-173, (2014).
[12]      Shokouhmand, H., Jam, F., Salimpour, M., "The effect of porous insert position on the enhanced heat transfer in partially filled channels", International Communications in Heat and Mass Transfer, 38:
pp. 1162-1167, (2011).
[13]      Kaya, A., "Effects of buoyancy and conjugate heat transfer on non-Darcy mixed convection about a vertical slender hollow cylinder embedded in a porous medium with high porosity", International Journal of Heat and Mass Transfer, 54: pp. 818-825, (2011).
[14]      Alihosseini, S., Jafari, A., "The effect of porous medium configuration on nanofluid heat transfer", Applied Nanoscience: pp. 1-12, (2019).
[15]      Yang, C., Nakayama, A., Liu, W., "Heat transfer performance assessment for forced convection in a tube partially filled with a porous medium", International Journal of Thermal Sciences, 54:
pp. 98-108, (2012).
[16]      Alihosseini, S., "Investigation of Nanoparticle’s Effect on Heat Transfer in Porous Foam Using CFD", Tarbiat Modares University, (2016).
[17]      Aguilar-Madera, C. G., Valdés-Parada, F. J., Goyeau, B., Ochoa-Tapia, J. A., "Convective heat transfer in a channel partially filled with a porous medium", International Journal of Thermal Sciences, 50:
pp. 1355-1368, (2011).
[18]      Torabi, M., Karimi, N., Zhang, K., "Heat transfer and second law analyses of forced convection in a channel partially filled by porous media and featuring internal heat sources", Energy, 93: pp. 106-127, (2015).
[19]      Dehghan, M., Valipour, M. S., Saedodin, S., Mahmoudi, Y., "Thermally developing flow inside a porous-filled channel in the presence of internal heat generation under local thermal non-equilibrium condition: a perturbation analysis", Applied Thermal Engineering, 98: pp. 827-834, (2016).
[20]      Cheng, C. -Y., "A boundary layer analysis of heat transfer by free convection from permeable horizontal cylinders of elliptic cross-section in porous media using a thermal non-equilibrium model", International Communications in Heat and Mass Transfer, 34:
pp. 613-622, (2007).
[21]      Wang, B., Hong, Y., Hou, X., Xu, Z., Wang, P., Fang, X., Ruan, X., "Numerical configuration design and investigation of heat transfer enhancement in pipes filled with gradient porous materials", Energy Conversion and Management, 105: pp. 206-215, (2015).
 
[22]      Nazari, M., Mohebbi, R., Kayhani, M., "Power-law fluid flow and heat transfer in a channel with a built-in porous square cylinder: Lattice Boltzmann simulation", Journal of non-Newtonian fluid mechanics, 204: pp. 38-49, (2014).
[23]      Nimvari, M. E., Maerefat, M., El-Hossaini, M., "Numerical simulation of turbulent flow and heat transfer in a channel partially filled with a porous media", International Journal of Thermal Sciences, 60: pp. 131-141, (2012).
[24]      Nield, D. A., Bejan, A., "Convection in porous media", Springer, New York, 4th. Edition, p. 11, (2013).
[25]      Rong, F., Zhang, W., Shi, B., Guo, Z., "Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric TLB model based on GPU", International Journal of Heat and Mass Transfer, 70: pp. 1040-1049, (2014).
[26]      Hines, A. L., Maddox, R. N., "Mass transfer: fundamentals and applications", Prentice-Hall Englewood-Cliffs, New Jersey, 1st. Edition,
pp. 145-169, (1985).
[27]      Fard, M. H., "CFD modeling of heat transfer of CO2 at supercritical pressures flowing vertically in porous tubes", International Communications in Heat and Mass Transfer, 37: pp. 98-102, (2010).
[28]      Alihosseini, S., Jafari, A., Haghtalab, A., "Investigation of TiO2/water nanofluid heat transfer inside a cylinder filled with Aluminium foam with different prosities using CFD", In Proceedings of the National Conference in Knowledge and Technology Mechanical and Electrical Engineering Iran (Tehran, 2016).
[29]      Perng, S. -W., Wu, H. -W., Wang, R. -H., Jue, T. -C., "Unsteady convection heat transfer for a porous square cylinder varying cylinder-to-channel height ratio", International journal of thermal sciences, 50: pp. 2006-2015, (2011).
 
[30]      Wu, H. -W., Wang, R. -H., "Convective heat transfer over a heated square porous cylinder in a channel", International journal of heat and mass transfer, 53:
pp. 1927-1937, (2010).
[31]      Dehghan, M., Valipour, M. S., Saedodin, S., "Microchannels enhanced by porous materials: heat transfer enhancement or pressure drop increment?", Energy Conversion and Management, 110: pp. 22-32, (2016).
[32]      White, F. M., "Fluid Mechanics", McGraw-Hill, New York, 7th. Edition, pp. 364-367, (2011)
[33]      Streeter, V. L., "Fluid Mechanics", McGraw-Hill, Tokyo, 3rd. Edition, pp. 189-196, (1962).
[34]      Akansu, S. O., "Heat transfers and pressure drops for porous-ring turbulators in a circular pipe", Applied Energy, 83: pp. 280-298, (2006).
[35]      Tirandaz, N., Dehghan, M., Valipour, M. S., "Heat and fluid flow through a helical annulus enhanced by a porous material: A perturbation study", Applied Thermal Engineering, 112: pp. 1566-1574, (2017).
[36]      Zheng, Z. -J., Li, M. -J., He, Y. -L., "Optimization of porous insert configuration in a central receiver tube for heat transfer enhancement", Energy Procedia, 75: pp. 502-507, (2015).
[37]      Mehrali, M., Sadeghinezhad, E., Rosen, M. A., Akhiani, A. R., Latibari, S. T., Mehrali, M., Metselaar, H. S. C., "Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube", International Communications in Heat and Mass Transfer, 66: pp. 23-31, (2015).