فرایند لجن فعال با نرخ بالا: بینش جدید برای بازیابی انرژی از فاضلاب شهری

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی امیرکبیر

2 گروه محیط زیست، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، کرج، البرز

3 استاد مهندسی‌شیمی، دانشگاه صنعتی امیرکبیر

چکیده

در دهه­های اخیر، افزایش جمعیت، کاهش منابع نفتی و تولید انبوه فاضلاب شهری نگرانی‌‌های زیادی را برای جوامع به‌وجود آورده ‌است؛ با توجه به کمبود و محدودیت سوخت­های فسیلی، منابع انرژی تجدیدپذیر از اهمیت ویژه­ ای برخوردار شده ­اند.
فاضلاب شهری، با توجه به تولید و تصفیۀ پیوسته در سراسر جهان، به یک منبع انرژی قابل
توجه تبدیل شده است. فرایند لجن فعال متعارف بیش از یک قرن است برای تصفیۀ فاضلاب شهری استفاده می‌شود؛ این فرایند با وجود برتری‌هایی همچون کیفیت
پساب خروجی بالا و قابلیت اطمینان به دلیل مشکلاتی همچون نیاز به هوادهی زیاد واکسایش مواد
آلی موجود در فاضلاب و تولید پسماند، بهسختی می‌تواند بهعنوان یک روش پایدار برای تصفیۀ فاضلاب در نظر گرفته شود. بهمنظور جلوگیری از اکسایش موادآلی فاضلاب و بازیابی انرژی از آن‌ها، تغییر فرایند و تغلیظ مواد آلی موجود در آن ضروری است. چندین فرایند فیزیکی، شیمیایی و زیستی برای افزایش غلظت مواد آلی فاضلاب شهری و جذب بر سطح لجن، که سبب بهبود بازیابی انرژی از راه هضم بی­هوازی می­شود، استفاده شده است. با توجه به کاستی‌های خاص فرایندهای فیزیکی و شیمیایی، نگاه‌ها متوجه فرایند زیستی شده ­است. این مطالعه یک ارزیابی جامع پیرامون انرژی موجود در فاضلاب شهری و روش­های استفاده‌شونده برای افزایش غلظت مواد آلی موجود در آن است. همچنین با ارزیابی محدودیت روش­های فیزیکی و شیمیایی، به بررسی فرایند لجن فعال با نرخ بالا شامل سازوکار، مؤلفه‌های عملیاتی و مطالعات اخیر انجام­شده بر این فرایند می‌پردازد.

کلیدواژه‌ها


عنوان مقاله [English]

High-Rate Activated Sludge Process: New Insight into Energy Recovery from Municipal Wastewater

نویسندگان [English]

  • Gh. Faridizad 1
  • E. Abdollahzadeh Sharghi 2
  • B. Bonakdarpour 3
1 Amirkabir University of Technology
2 Material and Energy Research Center
3 Amirkabir University of Technology
چکیده [English]

In recent decades, population growth, declining oil resources, and high production of municipal wastewater have raised many concerns for communities. Due to the shortage and limitations of fossil fuels, renewable energy sources are of particular importance. Municipal wastewater has become a remarkable source of energy due to its continuous production and treatment worldwide. The conventional activated sludge process has been used for more than a century to treat municipal wastewater. This process, despite its advantages such as high effluent quality and reliability, due to problems such as aeration, oxidation of organic matter present in the wastewater and waste production can hardly be considered as a sustainable method for wastewater treatment. In order to recover the energy present in the wastewater efficiently, it is necessary to change the process and
up-concentrate the organic matter in it. Several physical, chemical and biological processes are used to increase the up-concentration of organic matters present in the wastewater and capture them onto the sludge surface, which improve energy recovery through anaerobic digestion. Due to the special disadvantages of physical and chemical processes, attention is drawn to the biological process. This study will provide a comprehensive assessment of the energy available in municipal wastewater and the methods used to increase the concentration of organic matter. It will also assess the limitations of physical and chemical methods and examine the biological process of high rate activated sludge, mechanisms, operational parameters, and recent studies on this process.

کلیدواژه‌ها [English]

  • Energy recovery
  • Municipal wastewater
  • High-Rate Activated Sludge
  • Bioflocculation
  • anaerobic digestion
  • Membrane bioreactor

 

[1]      Daelman, M. R., van Voorthuizen, E. M., van Dongen, U. G., Volcke, E. I., van Loosdrecht, M. C., "Seasonal and diurnal variability of N2O emissions from a full-scale municipal wastewater treatment plant", Science of the Total Environment, 536,
pp.1-11, (2015).
[2]        Bekchanov, M., Ringler, C., Bhaduri, A., Jeuland, M., "How would the Rogun Dam affect water and energy scarcity in Central Asia?", Water International, 40, pp. 856-876, (2015).
[3]        Alloul, A., Ganigué, R., Spiller, M., Meerburg, F., Cagnetta, C., Rabaey, K., Vlaeminck, S. E., "Capture–ferment–upgrade: a three-step approach for the valorization of sewage organics as commodities", Environmental Science & Technology, 52,
pp. 6729-6742, (2018) ‏.
[4]        Verstraete, W., Van de Caveye, P., Diamantis, V., "Maximum use of resources presents in domestic used water", Bioresource Technology, 10,
pp. 5537–5545, (2009).
[5]        Guven, H., Dereli, R. K., Ozgun, H., Ersahin, M. E., Ozturk, I., "Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics", Progress in Energy and Combustion Science, 70, pp. 145-168, (2019).
[6]        Yagci, N., Konuk, M., Sozen, S., Meriç, S., Orhon, D., "Chemically enhanced membrane process–towards a novel sewage treatment concept to potentially replace biological processes", Desalination and Water Treatment, 57, pp. 1–12, (2015).
 
 
[7]        Liu, Y. J., Jun G., "Energy self-sufficient biological municipal wastewater reclamation: Present status, challenges and solutions forward", Bioresource Technology, 269, pp. 513-519, (2018).
[8]        Meerburg, F. A., Boon, N., Van Winckel, T., Vercamer, J. A., Nopens, I., Vlaeminck, S. E., "Toward energy-neutral wastewater treatment: a high-rate contact stabilization process to maximally recover sewage organics", Bioresource Technology, 179, pp. 373–381, (2015).
[9]        Ge, H., Batstone, D. J., Keller, J., "Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion", Water Research, 47,
pp. 46–57, (2013).
[10]      Ge, H., Batstone, D. J., Mouiche, M., Hu, S., Keller, J., "Nutrient removal and energy recovery from high-rate activated sludge processes–Impact of sludge age", Bioresource Technology, 245, pp. 1155-1161, (2017).
[11]      Zeng, Q., Hao, T., Yuan, Z., Chen, G., "Dewaterability enhancement and sulfide mitigation of CEPT sludge by electrochemical pretreatment", Water Research, 176, pp. 115-125, (2020).
[12]      Faust, L., Temmink, H., Zwijnenburg, A., Kemperman, A. J., Rijnaarts, H. H. M., "High loaded MBRs for organic matter recovery from sewage: effect of solids retention time on bioflocculation and on the role of extracellular polymers", Water Research, 56, pp. 258-266, (2014).
[13]      Akanyeti, I., Temmink, H., Remy, M., Zwijnenburg, A., "Feasibility of bioflocculation in a high-loaded membrane bioreactor for improved energy recovery from sewage", Water Science and Technology, 61, pp. 1433-1439, (2010).
[14]      Gomec, C. Y., "High-rate anaerobic treatment of domestic wastewater at ambient operating temperatures: A review on benefits and drawbacks", Journal of Environmental Science and Health Part A, 45, pp. 1169-1184, (2010).
[15]      Uwidia, I. E., Ademoroti, C. M. A., "Characterisation of domestic sewage from an estate in Warri, Nigeria", International Journal of Chemistry, 3, pp. 81-86, (2011).
[16]      Sancho, I., Lopez-Palau, S., Arespacochaga, N., Cortina, J. L., "New concepts on carbon redirection in wastewater treatment plants: A review", Science of the Total Environment, 647, pp. 1373-1384, (2019).
[17]      Doğruel, S., "Biodegradation characteristics of high strength municipal wastewater supported by particle size distribution", Desalination and Water Treatment, 45, pp. 11-20, (2012).
[18]      Gunes, K., Tuncsiper, B., Ayaz, S., Drizo, A., "The ability of free water surface constructed wetland system to treat high strength domestic wastewater: a case study for the Mediterranean", Ecological Engineering, 44, pp. 278-284, (2012).
[19]      Mutamim, N. S. A., Noor, Z. Z., Hassan, M. A. A., Yuniarto, A., Olsson, G., "Membrane bioreactor: Applications and limitations in treating high strength industrial wastewater", Chemical Engineering Journal, 225, pp. 109-119, (2013).
[20]      Alvarez, J. A., Armstrong, E., Gómez, M., Soto, M., "Anaerobic treatment of low-strength municipal wastewater by a two-stage pilot plant under psychrophilic conditions", Bioresource Technology, 99, pp. 7051-7062, (2008).
[21]      Ni, B. J., Xie, W. M., Liu, S. G., Yu, H. Q., Wang, Y. Z., Wang, G., Dai, X. L., "Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater", Water Research, 43, pp. 751-761, (2009).
[22]      Hocaoglu, S. M., Atasoy, E., Baban, A., Orhon, D., "Modeling biodegradation characteristics of grey water in membrane bioreactor", Journal of Membrane Science, 429, pp. 139-146, (2013).
[23]      De Anda, J., López-López, A., Villegas-García, E., Valdivia-Aviña, K., "High-strength domestic wastewater treatment and reuse with onsite passive methods", Water, 10, pp. 99-112, (2018).
[24]      Lazarova, V., Choo, K. H., Cornel, P., "Water-Energy Interactions in Water Reuse", London, UK: IWA Publishing, (2012).
[25]      Heidrich, E. S., Curtis, T. P., Dolfing, J., "Determination of the internal chemical energy of wastewater", Environmental Science & Technology, 45, pp. 827–32, (2011).
[26]      Gu, Y., Li, Y., Li, X., Luo, P., Wang, H., Robinson, Z. P., Li, F., "The feasibility and challenges of energy self-sufficient wastewater treatment plants", Applied Energy, 204, pp. 1463-1475, (2017).
[27]      Wan, J., Gu, J., Zhao, Q., Liu, Y., "COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment", Scientific Reports, 6, pp. 1-9, (2016).
[28]      Batstone, D. J., Virdis, B., "The role of anaerobic digestion in the emerging energy economy", Current Opinion in Biotechnology, 27, pp. 142-149, (2014).
[29]      Li, W. W., Yu, H. Q., "Advances in energy-producing anaerobic biotechnologies for municipal wastewater treatment", Engineering, 2, pp. 438-446, (2016).
[30]      Agarwal, A., Ng, W. J., Liu, Y., "Principle and applications of microbubble and nanobubble technology for water treatment", Chemosphere, 84, pp. 1175–1180, (2011).
[31]      Jin, Z., Gong, H., Temmink, H., Nie, H., Wu, J., Zuo, J., Wang, K., "Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery", Chemical Engineering, 292,
pp. 130–138, (2016).
[32]      Kimura, K., Honoki, D., Sato, T., "Effective physical cleaning and adequate membrane flux for direct membrane filtration (dmf) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery", Separation and Purification Technology, 181, pp. 37-43, (2017).
[33]      Murugesan, K., Selvam, A., Wong, J. W., "Flocculation and dewaterability of chemically enhanced primary treatment sludge by bioaugmentation with filamentous fungi", Bioresource Technology, 168, pp. 198–203, (2014).
[34]      Guan, X. H., Chen, G. H., Shang, C., "Reuse of water treatment works sludge to enhance particulate pollutant removal from sewage", Water Research, 39, pp. 33–40, (2005).
[35]      De Feo, G., De Gisi, S., Galasso, M., "Definition of a practical multi-criteria procedure for selecting the best coagulant in a chemically assisted primary sedimentation process for the treatment of urban wastewater", Desalination, 230, pp. 229–238, (2008).
[36]      Dong, T., Shewa, W. A., Murray, K., Dagnew, M., "Optimizing chemically enhanced primary treatment processes for simultaneous carbon redirection and phosphorus removal", Water, 11, pp. 547-560, (2019).
[37]      Chagnon, F. J., Harleman, D. R., "Chemically Enhanced Primary Treatment of Wastewater", Water Encyclopedia, 1, pp. 659-667, (2005).
[38]      Bezirgiannidis, A., Plesia-Efstathopoulou, A., Ntougias, S., Melidis, P, "Combined chemically enhanced primary sedimentation and biofiltration process for low cost municipal wastewater treatment", Journal of Environmental Science and Health, Part A, 54, pp. 1227-1232, (2019).
[39]      Sarparastzadeh, H., Saeidi, M., Naeimpour, F., Aminzadeh, B., "Pretreatment of municipal wastewater by enhanced chemical coagulation",  International Journal of Environmental Research, 1, pp. 104–113, (2007).
[40]      Jimenez, J., Miller, M., Bott, C., Murthy, S., De Clippeleir, H., Wett, B., "High-rate activated sludge system for carbon management – Evaluation of crucial process mechanisms and design parameters", Water Research, 87, pp. 476–82, (2015).
[41]      Emaminejad, S. A., Avval, S. S., Bonakdarpour, B., "Gaining deeper insights into the bioflocculation process occurring in a high loaded membrane bioreactor used for the treatment of synthetic greywater", Chemosphere, 230, pp. 316-326, (2019).
[42]      Modin, O., Saheb Alam, S., Persson, F., Wilén, B. M., "Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater", PLoS One, 10, pp. 1–15, (2015).
[43]      Saleha, M., El Enanyb, G., Elzaharc, M., Elshikhipy, M., "Use of alum for removal of total dissolved solids and total iron in high rate activated sludge system", International Journal of Environmental Engineering Science and Technology Research, 2, pp. 1–12, (2014).
[44]      Smith, A. L., Stadler, L. B., Cao, L., Love, N. G., Raskin, L., Skerlos, S. J., "Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion", Environmental Science & Technology, 48,
pp. 5972-5981, (2014). ‏
[45]      Taboada-Santos, A., Rivadulla, E., Paredes, L., Carballa, M., Romalde, J., Lema, J. M., "Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations", Water Research, 169, pp. 258-268, (2020).‏
[46]      Guellil, A., Thomas, F., Block, J. C., Bersillon, J. L., Ginestet, P., "Transfer of organic matter between wastewater and activated sludge flocs", Water Research, 35, pp. 143-150. (2001).
[47]      Modin, O., Persson, F., Wilén, B. M., Hermansson, M., "Nonoxidative removal of organics in the activated sludge process, Critical reviews", Environmental Science and Technology, 46,
pp. 635-672, (2016).
[48]      Kinyua, M. N., Miller, M. W., Wett, B., Murthy, S., Chandran, K., & Bott, C. B., "Polyhydroxyalkanoates, triacylglycerides and glycogen in a high rate activated sludge A-stage system", Chemical Engineering Journal, 316,
pp. 350-360, (2017).
[49]      Rosso, D., & Stenstrom, M. K., "Comparative economic analysis of the impacts of mean cell retention time and denitrification on aeration systems", Water Research, 39, pp. 3773-3780, (2005).
[50]      Leong, K. Y., Pooi, C. K., Yeap, T. S., Ng, H. Y., "Influence of bio(de)flocculation on activated sludge processes in membrane bioreactors", Current Developments in Biotechnology and Bioengineering, Elsevier, pp. 375-396, (2020).
[51]      Suresh, A., Grygolowicz-Pawlak, E., Pathak, S., Poh, L. S., bin Abdul Majid, M., Dominiak, D., Ng, W. J., "Understanding and optimization of the flocculation process in biological wastewater treatment processes: A review", Chemosphere 210, pp. 401-416, (2018).
[52]      Kinyua, M. N., Elliott, M., Wett, B., Murthy, S., Chandran, K., Bott, C. B., " The role of extracellular polymeric substances on carbon capture in a high rate activated sludge A-stage system", Chemical Engineering, 322, pp. 28–34, (2017).
[53]      Arabi, S., Nakhla, G., "Impact of magnesium on membrane fouling in membrane bioreactors", Separation and Purification Technology, 67,
pp. 319-325, (2009).
[54]      Li, Y., Chen, W., Liu, Q., Xiang, W., Zheng, X. C., Qu, J. X., "Effect on composition and quantity of extracellular polymeric substances in an innovative hybrid membrane bioreactor under different sludge retention times", Environmental Pollutants and Bioavailability, 31, pp. 103-111. (2019).
[55]      Xu, J., Yu, H. Q., Li, X. Y., "Probing the contribution of extracellular polymeric substance fractions to activated-sludge bioflocculation using particle image velocimetry in combination with extended DLVO analysis", Chemical Engineering Journal, 303,
pp. 627-635, (2016).
[56]      Hong, P. N., Taing, C., Phan, P. T., Honda, R., "Polarity-molecular weight profile of extracellular polymeric substances in a membrane bioreactor: Comparison between bulk sludge and cake layers", Journal of Water and Environment Technology, 16, pp. 40-53, (2018).
[57]      Ouyang, K., Junxin, L. I. U., "Effect of sludge retention time on sludge characteristics and membrane fouling of membrane bioreactor", Journal of Environmental Sciences, 21, pp. 1329-1335, (2009).
[58]      Silva, A. F., Antunes, S., Freitas, F., Carvalho, G., Reis, M. A., Barreto Crespo, M. T., "Impact of sludge retention time on MBR fouling: role of extracellular polymeric substances determined through membrane autopsy", Biofouling, 33, pp. 556-566, (2017).
[59]      Bolzonella, D., Pavan, P., Battistoni, P., Cecchi, F., "Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process", Process Biochemical, 40, pp. 1453–1460, (2004).
[60]      Sesay, M. L., Özcengiz, G., Sanin, F. D., "Enzymatic extraction of activated sludge extracellular polymers and implications on bioflocculation", Water Research, 40, pp. 1532-1599, (2006).
[61]      Clara, M., Kreuzinger, N., Strenn, B., Gans, O., Kroiss, H., "The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants", Water Research, 39, pp. 97-106, (2005).
[62]      Faust, L., Temmink, H., Zwijnenburg, A., Kemperman, A. J., Rijnaarts, H. H. M., "Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs", Water Research, 66, pp. 199-207, (2014). ‏
[63]      Guven, H., Ersahin, M. E., Dereli, R. K., Ozgun, H., Sancar, D., Ozturk, I., "Effect of hydraulic retention time on the performance of high-rate activated sludge system: a pilot-scale study", Water, Air & Soil Pollution, 228, pp. 417-427, (2017).
[64]      Seuntjens, D., Bundervoet, B. L., Mollen, H., De Mulder, C., Wypkema, E., Verliefde, A., Vlaeminck, S. E., "Energy efficient treatment of A-stage effluent: pilot-scale experiences with shortcut nitrogen removal", Water Science and Technology, 73,
pp. 2150–2158, (2016).
[65]      Rahman, A., De Clippeleir, H., Winckel, T. V., Le, T., Riffat, R., Wett, B., Murthy, S., "Does optimization of carbon redirection always imply energy recovery?", Conference: Proceedings of WEFTEC, Chicago, USA, pp. 4432-4443, (2015).
[66]      Miller, M. W., De Armond, J., Elliott, M., Kinyua, M., Kinnear, D, "Settling and dewatering characteristics of an A-stage activated sludge process proceeded by shortcut biological nitrogen removal", International Journal Water and Wastewater Treatment, 2, pp. 1-8, (2016).
[67]      Guven, H., Ozgun, H., Ersahin, M. E., Dereli, R. K., Sinop, I., Ozturk, I., "High-rate activated sludge processes for municipal wastewater treatment: the effect of food waste addition and hydraulic limits of the system". Environmental Science and Pollution Research, 26, pp. 1770-1780, (2019).
[68]      Rahman, A., Meerburg, F. A., Ravadagundhi, S., Wett, B., Jimenez, J., Bott, C., De Clippeleir, H., "Bioflocculation management through high-rate contact-stabilization: A promising technology to recover organic carbon from low-strength wastewater", Water Research; 104, pp. 485–496, (2016).
[69]      Leal, L. H., Temmink, H., Zeeman, G., Buisman, C. J. N., "Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts", Bioresource Technology, 101,
pp. 9065-9070, (2010).
[70]      Başaran, S. T., Aysel, M., Kurt, H., Ergal, I., Kumru, M., Akarsubaşı, A., Orhon, D., "Removal of readily biodegradable substrate in superfast membrane bioreactor", Journal of Membrane Science, 423,
pp. 477-486, (2012).
[71]      Dai, W., Xu, X., Yang, F., "High-rate contact stabilization process-coupled membrane bioreactor for maximal recovery of organics from municipal wastewater", Water, 10, pp. 878-890, (2018).
[72]      Miller, M. W., Elliott, M., Jimenez, J., Murthy, S., Wett, B., & Bott, C. B., "Adsorption-style high-rate activated sludge for carbon management and diversion", Water Environment Federation, 2015,
pp. 3723–3728. (2015).
[73]      Meerburg, F. A., Vlaeminck, S. E., Roume, H., Seuntjens, D., Pieper, D. H., Jauregui, R., Boon, N., "High-rate activated sludge communities have a distinctly different structure compared to low-rate sludge communities, and are less sensitive towards environmental and operational variables", Water Research, 100, pp. 137–145, (2016).
[74]      Belli, T. J., Bernardelli, J. K. B., da Costa, R. E., Bassin, J. P., Amaral, M. C. S., Lapolli, F. R., "Effect of solids retention time on nitrogen and phosphorus removal from municipal wastewater in a sequencing batch membrane bioreactor", Environmental Technology, 38, pp. 806-815, (2017).
[75]      Hamideh, H., Ehteshami, M., Mirbagheri, S. A., Rasouli, S. A., Zendehboudi, S., "Current status and future prospects of membrane bioreactors (MBRs) and fouling phenomena: a systematic review", The Canadian Journal of Chemical Engineering, 97,
pp. 32-58, (2019).
 
[76]      Guven, H., Ersahin, M. E., Dereli, R. K., Ozgun, H., Isik, I., Ozturk, I., "Energy recovery potential of anaerobic digestion of excess sludge from high-rate activated sludge systems co-treating municipal wastewater and food waste" Energy, 172,
pp. 1027-1036, (2019).
[77]      Cao, S., Lu, D., Phua, K., Yan, W., Le, C., Tao, G., Zhou, Y., "Organics transformation and energy production potential in a high rate A-stage system: A demo-scale study", Bioresource Technology, 295,
pp. 122-128, (2020).