مروری بر گرفتگی زیستی در غشاهای اسمز معکوس جهت نمک‌زدایی آب دریا

نوع مقاله : مقاله مروری

نویسندگان

سازمان پژوهش‌های علمی و صنعتی ایران

چکیده

یکی از مشکلات اساسی که واحدهای نمک­زدایی از آب دریا، به‌ویژه واحدهای اسمز معکوس با آن روبه­رو هستند مشکل گرفتگی و تشکیل زیست‌لایه (بیوفیلم) می­باشد. گرفتگی زیستی در اثر اتصال و رشد ریزاندام­ها بر سطح غشاء ایجاد می‌شود. گرفتگی غشاء سبب افزایش افت فشار دوسوی غشاء و درنتیجه افزایش میزان انرژی مصرفی، کاهش کارآیی و کاهش عمر غشاء می­شود. به‌طور خاص، گرفتگی زیستی سبب کاهش در شار آب، افزایش عبور نمک و افزایش تخریب زیستی غشاء می‌گردد. از این­رو، کاهش و یا حذف گرفتگی و گرفتگی زیستی جهت کاهش سرویس دوره­ای غشاء مورد توجه است. از بین انواع مختلف گرفتگی، کنترل و پایش گرفتگی زیستی دشواری­های بیشتری دارد؛ زیرا ریزاندام­ها و مواد آلی طبیعی که عامل گرفتگی زیستی هستند در شرایط مختلف، رفتار متفاوتی از خود نشان‌می­دهند. در این‌مقالۀ مروری، نحوۀ تشکیل زیست‌لایه و شاخص‌های مؤثر در آن، روش­های متداول و نوین پایش و پیشگیری از ایجاد گرفتگی زیستی بررسی شده‌است.

کلیدواژه‌ها


عنوان مقاله [English]

Biofouling in Seawater Reverse Osmosis Desalination Membranes: A Review

نویسندگان [English]

  • H. Baniamerian
  • S. Shokrollahzadeh
  • M. Safavi
Iranian Research Organization for Science and Technology
چکیده [English]

Biofouling is one of the major problems in seawater membrane processes, especially in reverse osmosis (RO) plants. Biofouling occurs as a result of the attachment and growth of microorganisms onto the membrane. Fouling increases the pressure drop across the membrane and consequently increases the energy consumption, decreases the efficiency and shortens the life time of the RO membrane. In particular, biofouling causes a decline in water flux, an increase in salt passage and an increase in biodegradation of the membrane. There is an interest to eliminate or reduce the potential of scaling and biofouling on membranes to minimize cleaning frequency. Monitoring and control of biofouling is the most difficult issue among the other types of fouling, because microorganisms and organic matters that are responsible for biofouling behave differently under different conditions. In this review article, biofilm formation and its effective parameters, conventional and novel methods of monitoring and prevention of biofouling are investigated.

کلیدواژه‌ها [English]

  • biofouling
  • Biofilm
  • Microorganism
  • Seawater Pre-Treatment
  • Reverse Osmosis Membrane
[1]        Fritzmann, C., Löwenberg, J., Wintgens, T., Melin, T., "State-of-the-art of reverse osmosis desalination". Desalination, 1–76, (2007).
[2]        Cipollina, A., Micale, G., Rizzuti, L., (Eds) "Seawater desalination: conventional and renewable energy processes". 1st Ed., Springer Science & Business Media, (2009).
[3]        Marconnet, C., Houari, A., Seyer, D., Djafer, M., Coriton, G., Heim, V., "Membrane biofouling control by UV irradiation". Desalination, 75–81, (2011).
[4]        Nguyen, T., Roddick, F. A., Fan, L., "Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures". Membranes (Basel), 804–40, (2012).
[5]        Khan, M. T., Manes ,C., Aubry, C., Croué, J., "Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea". Water Res, 558–68, (2013).
[6]        Tang, C., Kwon, Y., Leckie, J., "The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement". J Memb Sci, 526–32, (2009).
[7]        Tang, C., Chong, T., Fane, A., "Colloidal interactions and fouling of NF and RO membranes: a review". Adv Colloid Interface Sci, 126–43, (2011).
[8]        Bucs, S., Farhat, N., Kruithof, J., Picioreanu, C., van Loosdrecht, M., Vrouwenvelder, J., "Review on strategies for biofouling mitigation in spiral wound membrane systems". Desalination, 189–97, (2018).
[9]        Siddiqui, F., She, Q., Fane, A., Field, R., "Exploring the differences between forward osmosis and reverse osmosis fouling". J Memb Sci, 241–53, (2018).
[10]      Jeong, S., "Novel membrane hybrid systems as pretreatment to seawater reverse osmosis". PhD Thesis, OPUS open publications of UTS scholars, (2013).
[11]      Khedr, M., "Membrane fouling problems in reverse-osmosis desalination applications". Int Desalin Water Reuse, 8–17, (2000).
[12]      Sutzkover, I., Hasson, D., "Feed water pretreatment for desalination plants". Desalination, 264–289, (2010).
[13]      Al-Juboori, R. A., Yusaf, T., "Biofouling in RO system: mechanisms, monitoring and controlling". Desalination, 1–23, (2012).
[14]      Komlenic, R., "Rethinking the causes of membrane biofouling". Filtr Sep, 8–26, (2010).
[15]      Chiou, Y., Hsieh, M., Yeh, H. H., "Effect of algal extracellular polymer substances on UF membrane fouling". Desalination, 648–52, (2010).
[16]      Jiang, S., Li, Y., "Ladewig BP. A review of reverse osmosis membrane fouling and control strategies". Sci Total Environ, 567–595, (2017).
[17]      Vogeleer, P., Tremblay, Y., Mafu, A., Jacques, M., Harel, J., "Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli". Front Microbiol, 5:317–22, (2014).
[18]      Maddah, H., Chogle, A., "Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation". Appl Water Sci, 7–51, (2017).
[19]      Hori, K., "Matsumoto S. Bacterial adhesion: from mechanism to control". Biochem Eng J, 424–234, (2010).
[20]      Busscher, H. Norde, W. Sharma, P. Van der Mei, C., "Interfacial re-arrangement in initial microbial adhesion to surfaces". Curr Opin Colloid Interface Sci, 510–517, (2010).
[21]      Fletcher, M., "Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance". J Bacteriol, 2027–2030, (1988).
[22]      Pratt, L. Kolter, R., "Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili". Mol Microbiol, 285–293, (1998).
[23]      Danese, N. Pratt, L. Dove, S. Kolter, R., "The outer membrane protein, antigen 43, mediates cell‐to‐cell interactions within Escherichia coli biofilms". Mol Microbiol, 424–432, (2000).
[24]      Flemming, H., "Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions". Biofilm highlights, Springer; 81–109, (2011).
[25]      Busscher, H., Weerkamp, A., "Specific and non-specific interactions in bacterial adhesion to solid substrata". FEMS Microbiol Rev, 165–173, (1987).
[26]      Kang, S., Choi, H., "Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly (styrene-ran-sulfonic acid) random copolymers". Colloids Surfaces B Biointerfaces, 70–77, (2005).
 
[27]      Herzberg, M., Kang, S., Elimelech, M., "Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes". Environ Sci Technol, 4393–4398, (2009).
[28]      Farfan, M., Torres, A., "Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains". Infect Immun, 903–913, (2012).
[29]      Gristina, A., "Biomaterial-centered infection: microbial adhesion versus tissue integration". Science,1588–1595, (1987).
[30]      Richards, M., Cloete, T., "Nanoenzymes for biofilm removal". Nanotechnol Water Treat Appl Caister Acad Norfolk, 89–102, (2010).
[31]      Kristensen, J., Meyer, R., Laursen, B., Shipovskov, S., Besenbacher, F., Poulsen, C., "Antifouling enzymes and the biochemistry of marine settlement". Biotechnol Adv, 471–481, (2008).
[32]      Flemming, H., "Biofouling in water systems–cases, causes and countermeasures". Appl Microbiol Biotechnol, 629–640, (2002).
[33]      Hall-Stoodley, L., Costerton, J., Stoodley, P., "Bacterial biofilms: from the natural environment to infectious diseases". Nat Rev Microbiol, 95, (2004).
[34]      Munn, C., "Marine microbiology: Ecology & applications". Garland Science, (2011).
[35]      Hong, S., Jeong, J., Shim, S., Kang, H., Kwon, S., Ahn, K., "Effect of electric currents on bacterial detachment and inactivation". Biotechnol Bioeng, 379–386, (2008).
[36]      Goh, P., Lau, W., Othman, M., Ismail, A., "Membrane fouling in desalination and its mitigation strategies". Desalination, 130–155, (2018).
[37]      El-Arnaouty, M., Abdel, A., Eid, M., Aboulfotouh, M., Taher, N., Soliman, E., "Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting". J Radiat Res Appl Sci, 204–216, (2018).
[38]      Louie, J., Pinnau, I., Ciobanu, I., Ishida, K., Ng, A., Reinhard, M., "Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes". J Memb Sci, 762–770, (2006).
[39]      Armendariz, M., Quintero, Y., Llanquilef, A., Morel, M., Argentel, L., García, A., "Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes modified with copper and iron nanoparticles". Materials (Basel), 2081-2086, (2019).
[40]      Bhattacharya, A., Misra, B., "Grafting: a versatile means to modify polymers: techniques, factors and applications". Prog Polym Sci, 767–814, (2004).
[41]      Saffarimiandoab, F., Gul, B., Erkoc-Ilter, S., Guclu, S., Unal, S., Tunaboylu, B., "Evaluation of biofouling behavior of zwitterionic silane coated reverse osmosis membranes fouled by marine bacteria". Prog Org Coatings, 303–311, (2019).
[42]      Wilbert, M., Pellegrino, J., Zydney A., "Bench-scale testing of surfactant-modified reverse osmosis/ nanofiltration membranes". Desalination, 15–32, (1998).
[43]      Bos, R., Van der Mei, H., Busscher, H., "Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study". FEMS Microbiol Rev, 179–230, (1999).
[44]      Kwon, B., Lee, S., Cho, J., Ahn, H., Lee, D., Shin, H., "Biodegradability, DBP formation, and membrane fouling potential of natural organic matter: Characterization and controllability". Environ Sci Technol, 732–739, (2005).
[45]      Linhardt, R., Galliher, P., "Cooney CL. Polysaccharide lyases". Appl Biochem Biotechnol, 135–136, (1987).
[46]      Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C., Combes, D., "Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium". Biofouling, 11–22, (2008).
[47]      Webb, J., Thompson, L., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., "Cell death in Pseudomonas aeruginosa biofilm development". J Bacteriol, 4585–4592, (2003).
[48]      Kim, L., Jung, Y., Kim, S., Kim, C., Yu, H., Park, H., "Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning". Biofouling, 211–220, (2015).
[49]      Sotirova, A., Spasova, D., Vasileva-Tonkova, E., Galabova, D., "Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa". Microbiol Res, 297–303, (2009).
[50]      Denyer, S., Maillard, J., "Cellular impermeability and uptake of biocides and antibiotics in Gram‐negative bacteria". J Appl Microbiol, 35S-45S, (2002).
[51]      Russell, A., Furr, J., "Susceptibility of porin-and lipopolysaccharide-deficient strains of Escherichia coli to some antiseptics and disinfectants". J Hosp Infect, 47–56, (1986).
[52]      Al-Tahhan, R. A., Sandrin, T. R., Bodour, A., Maier, R., "Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates". Appl Environ Microbiol, 3262–3268, (2000).
[53]      Prihasto, N., Liu, Q., Kim, S., "Pre-treatment strategies for seawater desalination by reverse osmosis system". Desalination, 308–316, (2009).
[54]      Hong, S., Elimelech, M., "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes". J Memb Sci, 159–181, (1997).
[55]      Ghayeni, S., Beatson, P., Schneider, R., Fane, A., "Adhesion of waste water bacteria to reverse osmosis membranes". J Memb Sci, 29–42, (1998).
[56]      Lee, S., Elimelech, M., "Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces". Environ Sci Technol, 980–987, (2006).
[57]      Chang, R., "Physical chemistry for the biosciences". 1st. Ed., University Science Books, U.K., (2005).
[58]      Mo, H., Tay, K., Ng, H., "Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature". J Memb Sci, 28–35, (2008).
[59]      Nejati, S., Mirbagheri, S., Warsinger, D., Fazeli, M., "Biofouling in seawater reverse osmosis (SWRO): Impact of module geometry and mitigation with ultrafiltration". J Water Process Eng, 100782, (2019).
[60]      Oliveira, F., Schneider, R., "Slow sand filtration for biofouling reduction in seawater desalination by reverse osmosis". Water Res, 155:474–86, (2019).
[61]      Chua, K. T., Hawlader, M., Malek, A., "Pretreatment of seawater: results of pilot trials in Singapore". Desalination, 225–243, (2003).
[62]      Ghayeni, S., Beatson, P., Schneider, R., Fane, A., "Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): preliminary performance data and microbiological aspects of system operation". Desalination, 65–80, (1998).
[63]      Decarolis, J., Hong, S., Taylor, J., "Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater". J Memb Sci, 165–178, (2001).
[64]      Subramani, A., Hoek, E., "Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes". J Memb Sci, 111–125, (2008).
[65]      Brett, S., "Phosphorus removal and recovery technologies". 1st Ed., Selper Pub., U.K., (1997).
[66]      Battistoni, P., Angelis, A., Pavan, P., Prisciandaro, M., Cecchi, F., "Phosphorus removal from a real anaerobic supernatant by struvite crystallization". Water Res, 2167–2178, (2001).
[67]      Blaney, L., Cinar, S., SenGupta, A., "Hybrid anion exchanger for trace phosphate removal from water and wastewater". Water Res, 1603–1613, (2007).
[68]      Jacobs, J., Hasan, M., Paik, K., Hagen, W., van Loosdrecht, M., "Development of a bionanotechnological phosphate removal system with thermostable ferritin". Biotechnol Bioeng,918–923, (2010).
[69]      Arrojo, S., Benito, Y., Tarifa, A., "A parametrical study of disinfection with hydrodynamic cavitation". Ultrason Sonochem, 903–908, (2008).
[70]      Amjad, Z., "The science and technology of industrial water treatment". 1st. Ed., CRC press, (2010).
[71]      Richardson, S., Thruston, A., Caughran, T., Chen, P., Collette, T., Schenck, K., "Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine". Water Air Soil Pollut;95–102, (2000).
[72]      Majamaa, K., Johnson, J., Bertheas, U., "Three steps to control biofouling in reverse osmosis systems". Desalin Water Treat, 107–116, (2012).
[73]      Kim, D., Jung, S., Sohn, J., Kim, H., Lee, S., "Biocide application for controlling biofouling of SWRO membranes—an overview". Desalination, 43–52, (2009).
[74]      Mihelcic, J., Zimmerman, J., "Environmental engineering: Fundamentals, sustainability, design" 1st Ed., Wiley Global Education, (2014).
[75]      Kang, G., Gao, C., Chen, W., Jie, X., Cao, Y., Yuan, Q., "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane". J Memb Sci, 165–171, (2007).
[76]      Hoigné, J., Bader, H., "Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds". Water Res, 173–183, (1983).
[77]      Kim, B., Kim, D., Cho, D., Cho, S., "Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria". Chemosphere, 52:277–81, (2003).
[78]      Richardson, S., "Disinfection by-products and other emerging contaminants in drinking water". TrAC Trends Anal Chem, 666–684, (2003).
[79]      Landaburu-Aguirre, J., García-Pacheco, R., Molina, S., Rodríguez-Sáez, L., Rabadán, J., García-Calvo, E., "Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination". Desalination, 16–30, (2016).
[80]      Bella, G., Giustra, M., Freni, G., "Optimisation of coagulation/flocculation for pre-treatment of high strength and saline wastewater: Performance analysis with different coagulant doses". Chem Eng J, 283–292, (2014).
[81]      Hakizimana, J., Gourich, B., Vial, C., Drogui, P., Oumani, A., Naja, J., "Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis". Desalination, 90–101, (2016).
[82]      Silvestry-Rodriguez, N., Bright, K., Slack, D., Uhlmann, D., Gerba, C., "Silver as a residual disinfectant to prevent biofilm formation in water distribution systems". Appl Environ Microbiol, 1639–1641, (2008).
[83]      Lok, C., Ho, C., Chen, R., He, Q., Yu, W., Sun, H., "Proteomic analysis of the mode of antibacterial action of silver nanoparticles". J Proteome Res, 916–924, (2006).
[84]      Dror-Ehre, A., Adin, A., Markovich, G., Mamane, H., "Control of biofilm formation in water using molecularly capped silver nanoparticles". Water Res, 2601–2609, (2010).
[85]      Ethiraj, A., Jayanthi, S., Ramalingam, C., Banerjee, C., "Control of size and antimicrobial activity of green synthesized silver nanoparticles". Mater Lett, 526–529, (2016).
[86]      Mandal, S., Natarajan, S., Tamilselvi, A., Mayadevi, S., "Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment". J Environ Chem Eng, 2706–2712, (2016).
[87]      Zhang, J., Dalal, N., Matthews, M., Waller, L., Saunders, C., Fox, K., "Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis". J Microbiol Methods, 442–451, (2007).
[88]      Gill, L., Price, C., "Preliminary observations of a continuous flow solar disinfection system for a rural community in Kenya". Energy, 4607–4611, (2010).
[89]      Bukhari, Z., Hargy, T., Bolton, J., Dussert, B., Clancy, J., "Medium‐pressure UV for oocyst inactivation". Journal‐American Water Work Assoc, 86–94, (1999).
[90]      Parsons, S., (Ed.), "Advanced oxidation processes for water and wastewater treatment". 1st. Ed., IWA publishing, (2004).
[91]      Sultan, T., "Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor". Chemosphere, 170–179, (2016).
[92]      Guerrero-Latorre, L., Gonzales-Gustavson, E., Hundesa, A., Sommer, R., Rosina, G., "UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water". Int J Hyg Environ Health, 405–411, (2016).
[93]      Uslu, G., Demirci, A., Regan, J., "Disinfection of synthetic and real municipal wastewater effluent by flow-through pulsed UV-light treatment system". J Water Process Eng, 89–97, (2016).
[94]      Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., "Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection". Sci Total Environ, 125–132, (2015).
[95]      Al-Juboori, R., Aravinthan, V., Yusaf, T., "A review of Common and Alternative Methods for Disinfection of Microorganisms in Water". Proc. 2010 South. Reg. Eng. Conf., (SREC 2010), Engineers Australia, 147–55, (2010).
[96]      Clancy, J. L., Bukhari, Z., Hargy, T., Bolton, J., Dussert, B., Marshall, M., "Using UV to inactivate Cryptosporidium". Journal‐American Water Work Assoc, 97–104, (2000).
[97]      Choi, Y., Choi, Y., "The effects of UV disinfection on drinking water quality in distribution systems". Water Res, 115–22, (2010).
[98]      Sze, S., "Semiconductor devices: physics and technology". 1st ed., John wiley & sons, (2008).
[99]      Lasa, H., Serrano, B., Salaices, M., "Photocatalytic reaction engineering". Springer, (2005).
[100]    Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maccato, C., Maragno, C., "Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems". Nanotechnology, 375709, (2007).
[101]    Simonsen, M., Jensen, H., Li, Z., Søgaard, E., "Surface properties and photocatalytic activity of nanocrystalline titania films". J Photochem Photobiol A Chem, 192–200, (2008).
[102]    Yu, B., Hu, Z., Liu, M., Yang, H., Kong, Q., Liu, Y., "Review of research on air-conditioning systems and indoor air quality control for human health". Int J Refrig, 3–20, (2009).
[103]    Gibson, J., Yong, D., Farnood, R., Seto, P., "A literature review of ultrasound technology and its application in wastewater disinfection". Water Qual Res J, 23–35, (2008).
[104]    Young, F. R., "Cavitation". Imperial College Press, London, (1999).
[105]    Gogate, P. R., Kabadi, A., "A review of applications of cavitation in biochemical engineering/biotechnology". Biochem Eng J, 60–72, (2009).
[106]    Al-Juboori, R.,Yusaf, T., Aravinthan, V., "Investigating the efficiency of thermosonication for controlling biofouling in batch membrane systems". Desalination, 349–57, (2012).
[107]    Joyce, E., Mason, T., Phull, S., Lorimer, J., "The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions". Ultrason Sonochem, 231–234, (2003).
[108]    Marschall, H., Mørch, K., Keller, A., Kjeldsen, M., "Cavitation inception by almost spherical solid particles in water". Phys Fluids, 545–553, (2003).
[109]    Hulsmans, A., Joris, K., Lambert, N., Rediers, H., Declerck, P., Delaedt,Y., "Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system". Ultrason Sonochem, 1004–1009, (2010).
[110]    Kerwick, M. I., Reddy, S. M., Chamberlain, A., Holt, D., "Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection".Electrochim Acta,5270–5277, (2005).
[111]    Guyot, S., Ferret, E., Boehm, J., Gervais, P., "Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses". Int J Food Microbiol, 180–188, (2007).
[112]    Qin, G., Li, Z., Chen, X., Russell, A. B., "An experimental study of an NaClO generator for anti-microbial applications in the food industry". J Food Eng, 111–118, (2002).
[113]    Takayuki, O., Takahiro, O., Masayuki, S., "Decomposition of nucleic acid molecules in pulsed electric field and its release from recombinantEscherichia coli". J Electrostat, 163–170, (1999).
[114]    Dutreux, N., Notermans, S., Wijtzes, T.,
Gongora-Nieto, M., Barbosa-Canovas, G., Swanson, B., "Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions". Int J Food Microbiol, 91–98, (2000).
[115]    Reyns, K., Diels, A., Michiels, C., "Generation of bactericidal and mutagenic components by pulsed electric field treatment". Int J Food Microbiol, 165–173, (2004).
[116]    Zhe, C., Hong-Wu, W., Lu-ming, M., "Research progress on electrochemical disinfection technology for water treatment". Ind Water Wastewater, 1–5, (2008).
[117]    Wolf, G., Crespo, J., Reis, M., "Optical and spectroscopic methods for biofilm examination and monitoring". Rev Environ Sci Biotechnol, 227–251, (2002).
[118]    Lazarova, V., Manem, J., "Biofilm characterization and activity analysis in water and wastewater treatment". Water Res, 2227–2245, (1995).
[119]    Nivens, D., Palmer, R., White, D., "Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques". J Ind Microbiol, 263–276, (1995).
[120]    Davis, R., Mauer, L., "Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria". Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol, 1582–1594, (2010).
[121]    Janknecht, P., Melo, L., "Online biofilm monitoring". Rev Environ Sci Biotechnol, 269–283, (2003).
[122]    Isse, K., Lesniak, A., Grama, K., Roysam, B., Minervini, M., Demetris, A., "Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis". Am J Transplant, 27–37, (2012).
 
[123]    Stewart, G., Williams, P., "Lux genes and the applications of bacterial bioluminescence". Microbiology, 1289–1300, (1992).
[124]    Bageshwar, D., Pawar, A., Khanvilkar, V., Kadam, V., "Photoacoustic spectroscopy and its applications–A tutorial review". Eurasian J Anal Chem, 187–203, (2010).
[125]    Khan, M., Hong, P., Nada, N., Croue, J., "Does chlorination of seawater reverse osmosis membranes control biofouling?" Water Res, 84–97, (2015).
[126]    Saeki, D., Karkhanechi, H., Matsuura, H., Matsuyama, H., "Effect of operating conditions on biofouling in reverse osmosis membrane processes: Bacterial adhesion, biofilm formation, and permeate flux decrease". Desalination, 74–79, (2016).
[127]    Hassan, I., Ennouri, M., Lafforgue, C., Schmitz, P., Ayadi. A., "Experimental study of membrane fouling during crossflow microfiltration of yeast and bacteria suspensions: towards an analysis at the microscopic level". Membranes (Basel), 44–68, (2013).
[128]    Sim, L. N., Chong, T. H., Taheri, A. H., Sim, S. T. V., Lai, L., Krantz, W. B., Fane, A. G., "A review of fouling indices and monitoring techniques for reverse osmosis". Desalination, 434:169–88, (2018).
[129]    Hong, K., Lee, S., Choi, S., Yu, Y., Hong, S., Moon, J., "Assessment of various membrane fouling indexes under seawater conditions". Desalination, 247–259, (2009).
[130]    Choi, J., Hwang, T., Lee, S., Hong, S., "A systematic approach to determine the fouling index for a RO/NF membrane process". Desalination, 117–127, (2009).
[131]    Anis, S., Hashaikeh, R., Hilal, N., "Reverse osmosis pretreatment technologies and future trends: A comprehensive review". Desalination, 159–195, (2019).
[132]    Kavitha, J., Rajalakshmi, M., Phani, A., Padaki, M., "Pretreatment processes for seawater reverse osmosis desalination systems—A review". J Water Process Eng, 100926, (2019).