بررسی روش‌ها و عوامل مؤثر بر ساخت نانوذرات اکسید مس تک‌ظرفیتی به فرم پایدار

نوع مقاله: مقاله مروری

نویسندگان

1 دانشکده نانوفناوری، دانشگاه سمنان

2 دانشگاه زنجان، دانشکده مهندسی، گروه مهندسی مواد

چکیده

در سال­های اخیر، از نانوذرات اکسید مس تک‌ظرفیتی (Cu2O) به‌دلیل داشتن خواصی منحصر به فرد، به شکل‌های گوناگونی در صنایع مختلف استفاده شده است. به‌دلیل اهمیت و کاربرد فراوان آن، روش‌های متداول همنهشت این نانوذره که بیشتر از راه کاهش شیمیایی و ایجاد رسوب در یک محیط قلیایی آبی انجام می‌شود، در چهار گروه رسوب‌دهی، سولوترمال/ هیدروترمال، سونوشیمی و الکتروشیمی بررسی شده است. خواص و ویژگی­ها، پایداری و همچنین میزان عملکرد این نانوذره به نحوۀ ساخت و مؤلفه‌های مؤثر بر اندازه، ساختار، شکل، خلوص و پایداری آن بستگی دارد؛ لذا تأثیر عواملی مانند نوع سورفکتانت و پیش‌ماده، عامل پوشش‌دهنده و کاهنده، دما و زمان واکنش، سرعت هم‌زدن مواد اولیه و غلظت حلال مصرفی بررسی شده است؛ با افزایش غلظت عامل کاهنده، سرعت هم‌زدن، غلظت پیش‌ماده و حلال تا حد بهینه، اندازۀ ذرات همنهشتی کوچکتر می‌شود.

کلیدواژه‌ها


 

[1]        Limin, Q., "Synthesis of inorganic nanostructures in reverse micelles”, Encyclopedia of Surface and Colloid Science, 2: pp. 6183-6207, (2006).
[2]        Sharma, P., Bhatti, H. S., "Synthesis of quasi-1D cuprous oxide nanostructure and its structural characterizations”, Journal of Physics and Chemistry of Solids, 69: pp. 1718–1727, (2008).
[3]        Bai, Y., Yang, T., Gu, Q., Cheng, G., Zheng, R., "Shape control mechanism of cuprous oxide nanoparticles in aqueous colloidal solutions”, Powder Technology, 227: pp. 35-42, (2012).
[4]        Behera, M., Girl, G., "Green synthesis and characterization of cuprous oxide nanoparticles in presence of a bio-surfactant”, Materials Science-Poland, 32: pp. 702-708 (2014).
[5]        Ostaeva, G. Y., Isaeva, I. Y., Grushina, V. V., Stuzhuk, A. N., Odinokova, I. V., "Influence of the Molecular Mass of Poly(N-vinylpyrrolidone) on Formation of Cu2O Nanoparticles During Reduction of Divalent Copper Ions with tert-Butylamine Borane in Polymer Solution”, Polymer Science, Series B, 60: pp. 455–463 (2018).
 
 
 
[5]        Eivazihollagh, A. R., Norgren, M., Dahlström, Ch., Edlund, H., "Controlled Synthesis of Cu and Cu2O NPs and Incorporation of Octahedral Cu2O NPs in Cellulose II Films”, Nanomaterials, 8 (4): p. 238 (2018).
[6]        Guzman, M., Arcos, M., Dille, J., Godet, S., Rousse, C., "Effect of the Concentration of NaBH4 and N2H4 as Reductant Agent on the Synthesis of Copper Oxide Nanoparticles and its Potential Antimicrobial Applications”, Nano Biomedicine and Engineering, 10: pp. 392-405 (2018).
[7]        Zhu, H., Li, Y., Jiang, X., "Room-temperature synthesis of cuprous oxide and its heterogeneous nanostructures for photocatalytic applications”, Journal of Alloys and Compounds, 722: pp. 447-459 (2019).
[8]        Gupta, D., Meher, S. R., Illyaskutty, N., Alex, Z. C., "Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties”, Journal of Alloys and Compounds, 743: pp. 737-745 (2018).
[10]      Aguilar, M. S., Rosas, G., "A new synthesis of Cu2O spherical particles for the degradation of methylene blue dye”, Environmental Nanotechnology, Monitoring and Management, 11: p. 100195 (2019).
[11]      Nishimura, K., Huaman, J. L. C., Hiroshi, M., Akiyama, T., Oku, T., Jeyadevan, B., "Synthesis of crystalline Cu2O nanoparticles using long chained alcohol”, Materials Research Express, 1: p. 015032 (2014).
[12]      Cao, S., Han, T., Peng, L., Zhao, C., Wang, J., "Hydrothermal synthesis, characterization and gas sensing properties of novel Cu2O open hollow nanospheres”, Ceramics International, 43:
pp. 4721-4724 (2016).
[13]      Su, Y., Li, H., Ma, H., Robertson, J., Nathan, N., "Controlling Surface Termination and Facet Orientation in Cu2O Nanoparticles for High Photocatalytic Activity: A Combined Experimental and DFT Study”, ACS Applied Materials & Interfaces, 9: pp. 8100-8106 (2017).
 
[14]      Kerour, A., Boudjadar, S., Bourzami, R., Allouche, B., "Eco-friendly synthesis of cuprous oxide (Cu2O) nanoparticles and improvement of their solar photocatalytic activities”, Journal of Solid State Chemistry, 263: pp. 79-83 (2018).
[15]      Yuan, B., Liu, X., Fu, H., Liu, J., Zhu, Q., Wu, M., "One-step synthesis of flower-like Cu2O photoelectric materials by hydrothermal method”, Solar Energy, 188: pp. 265-270 (2019).
[16]      Kaviyarasan, K., Anandan, S., Mangalaraja, R. V., Sivasankar, T., Ashokkumar, M., "Sonochemical synthesis of Cu2O nanocubes for enhanced chemiluminescence applications”, Ultrasonic Sonochemistry, 29: pp. 388-393 (2016).
[17]      Bhosale, M. A., Bhanage, B. M., "A simple approach for sonochemical synthesis of Cu2O nanoparticles with high catalytic properties”, Advanced Powder Technology, 27: pp. 238-244 (2016).
[18]      Liu, J., He, B., Chen, Q., Liu, H., Li, J., Xiong, Q., Zhang, X., Yang, S., Yue, G., Liu, Q. H., "Plasma electrochemical synthesis of cuprous oxide nanoparticles and their visible-light photocatalytic effect”, Electrochimica Acta, 222: pp. 1677-1681 (2016).
[19]      Arshadi-Rastabi, Sh., Moghaddam, J., Eskandarian, M. R., "Synthesis, characterization and stability of Cu2O nanoparticles produced via supersaturation method considering operational parameters effect”, Journal of Industrial and Engineering Chemistry, 22: pp. 34–40 (2015).
[20]      Wang, W., Ning, H., Yang, Zh., Feng, Zh., Wang, J., Wang, X., Mao, Q., Wu, W., Zhao, Q., Hu, H., Song, Y., Wu, M., "Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4”, Electrochimica Acta, 306: pp. 360-365 (2019).
[21]      Liu, J., He, B., Wang, X., Chen, Q., Yue, G., "Morphology-controlled synthesis of cuprous oxide nanoparticles by plasma electrochemistry and its photocatalytic activity”, TheEuropean Physical Journal D, 73: pp. 90100-901105 (2019).