بررسی آزمایشگاهی فرایند جذب کربن‌دی‌اکسید پس- احتراقی با استفاده‌از محلول آبی تری‌اتانول‌آمین اصلاح‌شده با ال- آرژنین در میکروراکتور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی کرمانشاه

2 استادیار مهندسی شیمی، دانشگاه صنعتی کرمانشاه

چکیده

مطالعۀ حاضر، عملکرد جذب ‌دی‌اکسیدکربن را در حضوراسید آمینۀ ال- آرژنین بهعنوان بهبود‌دهنده در محلول آبی تریاتانولآمین  (TEA)در یک میکروراکتور بررسی می­کند. برای بررسی آزمایشگاهی فرایند جذب، از محلول آبی (30+0 درصد وزنی)ARG-TEA  و مخلوط TEA و آرژنین در غلظت‌های (26+4 درصد وزنی) ARG-TEA، (22+8 درصد وزنی) و (18+ 12 درصد وزنی) تحت نرخ جریان حلال 3-9 میلی‌لیتر بر دقیقه و دبی گاز ورودی 120- 300 میلی‌لیتر بر دقیقه در دمای 45 درجۀ سلسیوس استفاده شد. عملکرد انتقال جرم براساس مقادیرتجربی ضریب کلی انتقال جرم حجمی برمبنای فاز گاز (KGaV)، بازده جذب (AE) و شار انتقال جرم حجمی (NAaV) ارزیابی شد. نتایج این بررسی نشان داد که در دبی متوسط مایع و گاز، با افزایش غلظت آرژنین در محلول آبی تا 12 درصد وزنی، مقادیر KGaV در محلول آبی حاوی 30 درصد وزنی TEA از مقدار 09/11 به 83/37 کیلومول بر متر مکعب‌ساعت‌کیلوپاسکال در محلول (18+12 درصد وزنی) ARG-TEA بهبود می‌یابد، به‌طوریکه تحت این شرایط بازده جذب تا حدود 40 درصد افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of Post-Combustion CO2 Capture Process Using Aqueous Solution of Triethanolamine Enhanced by L-Arginine in a Micro-Reactor

نویسندگان [English]

  • B. Valadian 1
  • peyvand Valeh-e-sheyda 2
1 M. Sc. Student of Chemical Engineering, Kermanshah University of Technology
2 Assistant Professor of Chemical Engineering, Kermanshah University of Technology
چکیده [English]

The present study investigates the performance of CO2 absorption in the presence of amino acid L-arginine (ARG) as a promoter in an aqueous solution of triethanolamine (TEA) in a micro-reactor. In order to experimentally evaluate the absorption process, the aqueous solution of 30% TEA and a mixture of TEA and arginine were used in four concentrations of ARG-TEA (0+30 wt%), (4+26 wt%), (8+22 wt%), and (12+18 wt%) under the solvent flow rate of 3-9 ml/min and the inlet gas flow rate of 120-300 ml/min at the temperature of 45 . The experimental mass transfer performance was evaluated in terms of the overall volumetric gas-phase mass transfer coefficient (KGaV), absorption efficiency (AE), and volumetric mass transfer flux (NAaV). The results of this investigation illustrated that in the medium flow rate of solvent and gas, by increasing the arginine concentration in the aqueous solution (30 %wt TEA) up to 12 wt% in the TEA+ARG (12+18%wt), the values of KGaV increased from 11.09 to 83.37 kmol/m3 kPah so that the absorption efficiency improves up to about 40%.

کلیدواژه‌ها [English]

  • Carbon Dioxide
  • Arginine
  • Triethanolamine
  • Overall Mass Transfer Coefficient
  • Micro-Reactor
[1]        Etemad, E., Ghaemi, A., & Shirvani, M. (2015). Prediction of CO2 mass transfer flux in amine solutions using neural networks”. Chemical Engineering Journal, 14 (79). 98-106, [In persian].
[2]        Shokrollahi, F., Lau, K., Partoon, B., & Smith, A. (2022). A review on the selection criteria for slow and medium kinetic solvents used in CO2 absorption for natural gas purification. Journal of Natural Gas Science and Engineering, 98,104390.
[3]        Rashidi, H., Rasouli, P., & Azimi, H. (2022), A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study, Energy, 244, 122711.
[4]        Hu, G., Smith, K. H., Wu, Y., Kentish, S. E., & Stevens, G. W. (2017). Screening amino acid salts as rate promoters in potassium carbonate solvent for carbon dioxide absorption. Energy & fuels, 31(4), 4280-4286.
[5]        Mahmud, N., Benamor, A., Nasser, M. S., Al-Marri, M. J., Qiblawey, H., & Tontiwachwuthikul, P. (2017). Reaction kinetics of carbon dioxide with aqueous solutions of l-Arginine, Glycine & Sarcosine using the stopped flow technique. International Journal of Greenhouse Gas Control, 63, 47-58.
[6]        Meng, C., Da-ming, F., Lue-lue, H., Yi-shu, G., Jian-lian, H., Jian-xin, Z., & Hao, Z. (2017). A new approach to microwave food research: Analyzing the electromagnetic response of basic amino acids. Innovative Food Science & Emerging Technologies, 41, 100-108.
[7]        Choubtashani, S., & Rashidi, H. (2023). CO2 capture process intensification of water-lean methyl diethanolamine-piperazine solvent: Experiments and response surface modeling. Energy, 267, 126447.
[8]        Zhang Y., Zhu, C., Chu, Ch., Fu, T., & Ma Y. (2022). Mass transfer and capture of carbon dioxide using amino acids sodium aqueous solution in microchannel. Chemical Engineering and Processing - Process Intensification, 173, 108831.
[9]        Kiani, M. R., Makarem, M. A., Farsi, M., & Rahimpour, M. R. (2020). Chapter 7 - Novel gas-liquid contactors for CO2 capture: Mini- and micro-channels, and rotating packed beds. In M. R. Rahimpour, M. Farsi, & M. A. Makarem (Eds.), Advances in Carbon Capture (pp. 151-170): Woodhead Publishing.
[10]      Singh, A. K., Sharma, Y., Wupardrasta, Y., & Desai, K. (2016). Selection of amine combination for CO2 capture in a packed bed scrubber. Resource-Efficient Technologies, 2, 165170.
[11]      Yeon, S.-H., Sea, B., Park, Y. -I., Lee, K. -S., & Lee, K. -H. (2004). Absorption of Carbon Dioxide Characterized by Using the Absorbent Composed of Piperazine and Triethanolamine. Separation Science and Technology, 39, 3280-3300.
[12]      Talkhan, A. G., Benamor, A., Nasser, M., El‐Naas, M. H., El‐Tayeb, S. A., & El‐Marsafy, S. (2020). Absorption of CO2 in aqueous blend of methyldiethanolamine and arginine. AsiaPacific Journal of Chemical Engineering, 15(3), e2460.
[13]      Haghtalab, A., & Gholami, V. (2019). Carbon dioxide solubility in the aqueous mixtures of diisopropanolamine+ l-arginine and diethanolamine+ l-arginine at high pressures. Journal of Molecular Liquids, 288, 111064.
[14]      Park, S. -W., Choi, B. -S., & Lee, J. -W. (2006). Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions. Korean Journal of Chemical Engineering, 23, 138-143.
[15]      Asadi, M., Abolghasemi, H., & Esmaeeli, M. (2012). Absorption of carbon dioxide by sodium hydroxide aqueous solution in a packed column: mass transfer coefficient and absorption rate. Chemical Engineering Journal. 11(62), 27-33.
[16]      Aroonwilas, A., & Tontiwachwuthikul, P. (1998). Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing. Industrial & engineering chemistry research, 37(2), 569-575.
[17]      Chiang, C. -Y., Lee, D. -W., & Liu, H. -S. (2017). Carbon dioxide capture by sodium hydroxide-glycerol aqueous solution in a rotating packed bed. Journal of the Taiwan Institute of Chemical Engineers, 72, 29-36.
[18]      Ma, S., Zang, B., Song, H., Chen, G., & Yang, J. (2013). Research on mass transfer of CO2 absorption using ammonia solution in spray tower. International Journal of Heat and Mass Transfer, 67, 696-703.
[19]      Benamor, A., Al-Marri, M. J., Khraisheh, M., Nasser, M. S., & Tontiwachwuthikul, P. (2016). Reaction kinetics of carbon dioxide in aqueous blends of N-methyldiethanolamine and glycine using the stopped flow technique. Journal of Natural Gas Science and Engineering, 33, 186-195.
[20]      Zhu, C., Guo, H., Chu, C., Fu, T., & Ma, Y. (2020). Gas-liquid distribution and mass transfer of CO2 absorption into sodium glycinate aqueous solution in parallel multi-channel microreactor. International Journal of Heat and Mass Transfer, 157, 119943.
[21]      Kittiampon, N., Kaewchada, A., & Jaree, A. (2017). Carbon dioxide absorption using ammonia solution in a microchannel. International Journal of Greenhouse Gas Control, 63, 431-441.
[22]      Rashidi, H., Rasouli, P., & Azimi, H. (2022). A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent: Microcontactor mass transfer study. Energy, 244, 122711.
[23]      Chen, J. F., Chen, G. Z., Wang, J. X., Shao, L., & Li, P. F. (2011). High‐throughput microporous tube‐in‐tube microreactor as novel gas–liquid contactor: Mass transfer study. AIChE journal, 57(1), 239-249.
[24]      Zhang, L. -L., Wang, J. -X., Xiang, Y., Zeng, X. -F., & Chen, J. -F. (2011). Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: mass transfer study. Industrial & engineering chemistry research, 50(11), 6957-6964.
[25]      Tan, C. -S., & Chen, J. -E. (2006). Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Separation and Purification Technology, 49(2), 174-180.
[26]      Saidi, M. (2017). Rate-Based Modeling of CO2 Absorption into Piperazine-Activated Aqueous
N-Methyldiethanolamine Solution: Kinetic and Mass Transfer Analysis. International Journal of Chemical Kinetics, 49(9), 690-708.
[27]      Naami, A., Sema, T., Edali, M., Liang, Z., Idem, R., & Tontiwachwuthikul, P. (2013). Analysis and predictive correlation of mass transfer coefficient KGav of blended MDEA-MEA for use in post-combustion CO2 capture. International Journal of Greenhouse Gas Control, 19, 3-12.
[28]      Sarlak, S., & Valeh-e-Sheyda, P. (2022). The contribution of l-Arginine to the mass transfer performance of CO2 absorption by an aqueous solution of methyl diethanolamine in a microreactor. Energy, 239, 122349.