بررسی پارامتریک پیل سوختی اکسید جامد تمام متخلخل لوله‌ای با سوخت آمونیاک و مدل سینتیکی تمکین- پیژف

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری مهندسی مکانیک، دانشگاه صنعتی خواجه نصیر طوسی

2 استاد گروه مهندسی مکانیک تبدیل انرژی، دانشگاه صنعتی خواجه نصیر طوسی

3 استادیار گروه مهندسی مکانیک تبدیل انرژی، دانشگاه صنعتی خواجه نصیر طوسی

چکیده

بحران انرژی و نگرانی­های محیط زیستی در دهه­های اخیر، چالش جدی زندگی بشری است. پیل سوختی به­ویژه نوع اکسید جامد با توجهبه ویژگی­هایی ازجمله انعطاف سوختی، بازدهی مناسب و بینیازی از فلزهای گرانبها استقبال پیدا کرده‌است. با این حال، مشکلات سوخت هیدروژن مانند چگالی انرژی پایین فاز گاز، ذخیره­سازی و قابلیت حمل دشوار، آمونیاک را بهعنوان گزینۀ مناسب جایگزین سوخت مطرح کردهاست. در این پژوهش، پیل سوختی اکسید جامد تماممتخلخل لوله­ای با سوخت آمونیاک شبیه­سازی و بررسی شدهاست. بر این اساس، معادلات بقای جرم، ممنتوم، انرژی، گونه­ها و شار الکتریکی به‌صورت کد المان محدود تعریف، کوپل و حل شدهاست. نتایج نشان می­دهد که وجود تخلخل الکترولیت باعث افزایش بازدهی پیل سوختی با سوخت آمونیاک می‌شود. همچنین مشاهده شد که چگالی توان و جریان پیل سوختی با دمای کاری و سرعت جریان رابطۀ مستقیم و با تخلخل الکترودها رابطۀ عکس دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Parametric Study of Ammonia-Fueled Tubular AP-SOFC with Temkin-Pyzhev Kinetic Model

نویسندگان [English]

  • M. Keyhanpour 1
  • M. Ghasemi 2
  • M. Pourbagian 3
1 Ph. D. Student of Mechanical Engineering, K. N. T. University of Technology
2 Professor of Mechanical Engineering, K. N. T. University of Technology
3 Assistant Professor of Mechanical Engineering, K. N. T. University of Technology
چکیده [English]

The energy crisis and environmental concerns in recent decades are a serious challenge to human life. The fuel cell, especially the solid oxide type, has been welcomed due to its features such as fuel flexibility, good efficiency and no need for precious metals. However, the problems of hydrogen fuel, such as the low energy density of the gas phase, difficult storage and portability, have suggested ammonia as a suitable alternative fuel. In this research, tubular all porous solid oxide fuel cell ammonia fueled has been simulated and investigated. Therefore, the equations of conservation of mass, momentum, energy, species and electric flux are defined, coupled and solved in the form of finite element code. The results show that the presence of electrolyte porosity increases the efficiency of fuel cell ammonia fueled. It was also observed that the power and current density of the fuel cell have a direct relation with the operation temperature and flow rate and an inverse relation with the porosity of the electrodes.

کلیدواژه‌ها [English]

  • Solid Oxide Fuel Cell
  • Porosity
  • Ammonia
  • Numerical Simulation
[1]        Wang, Y., Gu, Y., & Zhang, H. (2020). Efficient and durable ammonia power generation by symmetric flat-tube solid oxide fuel cells. Applied Energy, 270, 115185.
[2]        Yang, J., Akagi, T., Okanishi, T., Muroyama, H., Matsui, T., & Eguchi, K. (2015). Catalytic Influence of Oxide Component in Ni‐Based Cermet Anodes for Ammonia‐Fueled Solid Oxide Fuel Cells. Fuel Cells, 15(2),  390-397.
[3]        Wojcik, A., Middleton, H., & Damopoulos, I. (2003). Ammonia as a fuel in solid oxide fuel cells. Journal of Power Sources, 118(1-2),  342-348.
[4]        Afif, A., Radenahmad, N., Cheok, Q., Shams, S., Kim, J. H., & Azad, A. K. (2016). Ammonia-fed fuel cells: a comprehensive review. Renewable and Sustainable Energy Reviews, 60,  822-835.
[5]        Ilbas, M., Kumuk, B., Alemu, M. A., & Arslan, B. (2020). Numerical investigation of a direct ammonia tubular solid oxide fuel cell in comparison with hydrogen. International Journal of Hydrogen Energy, 45(60),  35108-35117.
[6]        Vilekar, S. A., Fishtik, I., & Datta, R. (2012). The peculiar catalytic sequence of the ammonia decomposition reaction and its steady-state kinetics. Chemical engineering science, 71,  333-344.
[7]        Zhang, L., You, C., Weishen, I., & Liwu, L. (2007). A direct ammonia tubular solid oxide fuel cell. Chinese Journal of Catalysis, 28(9),  749-751.
[8]        Lin, Y. (2010). Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. International Journal of Hydrogen Energy, 35(7),  2637-2642.
[9]        Farhad, S., & Hamdullahpur, F. (2010(. Conceptual design of a novel ammonia-fuelled portable solid oxide fuel cell system. Journal of Power Sources, 195(10),  3084-3090.
[10]      Cheddie, D. F. )2013(. Modelling of Ammonia-Fed Solid Oxide Fuel Cells in COMSOL. in Proc. of the 2013 COMSOL conference, Boston, U. S. A.,  43-51.
[11]      Molouk, A. F. S., Yang, J., Okanishi, T., Muroyama, H., Matsui, T., & Eguchi, K. (2016). Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells.  Journal of Power Sources, 305,  72-79.
[12]      Barelli, L., Bidini, G., & Cinti, G. (2020). Operation of a solid oxide fuel cell based power system with ammonia as a fuel: Experimental.  test and system design. Energies, 13(23), 6173.
[13]      Ilbas, M., Alemu, M. A., & Cimen, F. M. )2022(. Comparative performance analysis of a direct ammonia-fuelled anode supported flat tubular solid oxide fuel cell: A 3D numerical study.   International Journal of Hydrogen Energy, 47(5),  3416-3428.
[14]      Asmare, M., Ilbas, M., Cimen, F. M., Timurkutluk, C., & Onbilgin, S. )2022(. Three-dimensional numerical simulation and experimental validation on ammonia and hydrogen fueled micro tubular solid oxide fuel cell performance. International Journal of Hydrogen Energy, 47(35),  15865-15874.
[15]      Cimen, F. M., Kumuk, B., & Ilbas, M., )2022(. Simulation of hydrogen and coal gas fueled flat-tubular solid oxide fuel cell (FT-SOFC). International Journal of Hydrogen Energy, 47(5),  3429-3436.
[16]      Cheddie, D. F. (2018). Temkin-Pyzhev Kinetics in Intermediate Temperature Ammonia-Fed Solid Oxide Fuel Cells (SOFCs) . Int J Power Energy Res, 2(3), 43-51
[17]      Fahs, I. E., Ghasemi, M., (2018). A New Sensitivity Study of Thermal Stress Distribution for a Planar Solid Oxide Fuel Cell. Journal of Renewable Energy and Environment, 5(4),  18-26.
[18]      Serincan, M. F., Pasaogullari, U., & Sammes, N. M., (2009). A transient analysis of a micro-tubular solid oxide fuel cell (SOFC). Journal of Power Sources, 194(2),  864-872.
[19]      Keyhanpour, M., & Ghasemi, M. (2022). 3D Simulation of Effect of Geometry and Temperature Distribution on SOFC Performance. Scientific Journal of Fluid Mechanics and Aerodynamics. 10(2),  169-183, [In Persian].
[20]      Keyhanpour, M., & Ghasemi, M. (2022). 3D Investigation of Tubular PEM Fuel Cell Performance Assuming Fluid-Solid-Heat Interaction. Computational Methods in Engineering, 41(1), 77-99, [In Persian].
[21]      Kamvar, M., & Steinberger-Wilckens, R. (2021). Numerical Investigation of a Hydrogen-fuelled Planar AP-SOFC Performance with Special Focus on Safe Operation. Iranian Journal of Hydrogen & Fuel Cell, 8(2),  113-125.
[22]      Sayadian, S., Ghassemi, M., & Robinson, A. J. (2021). Multi-physics simulation of transport phenomena in planar proton-conducting solid oxide fuel cell.  Journal of Power Sources, 481,  228997.
[23]      Ranasinghe S. N., & Middleton, P. H., (2017). “Modelling of single cell solid oxide fuel cells using COMSOL multiphysics”. in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 1-6.