امکان استفاده از کربنیک انیدرازها در جداسازی بیولوژیکی کربن‌دی‌اکسید: چالش‌ها و فرصت‌ها

نوع مقاله : مقاله مروری

نویسندگان

1 استادیار مهندسی شیمی، دانشگاه زنجان

2 دانشجوی کارشناسی مهندسی شیمی، دانشگاه زنجان

3 دانشجوی کارشناسی ارشد مهندسی شیمی، دانشگاه صنعتی شریف

چکیده

از سال 1990 تا 2020، میزان تولید گاز کربن‌دی‌اکسید بهطور چشم‌گیری (50%) افزایش یافته است. تخمین زده می‌شود که تا سال 2050 علاوه بر این میزان افزایش، تولید این گاز گلخانه‌ای 30-50% بیشتر شود. این امر موجب گرم شدن کرۀ زمین و تأثیر منفی بر روی محیط زیست و سلامتی انسان‌ها شده است. افزون بر این، میزان کربن‌دی‌اکسید در هواکره طی دو هزار سال گذشته 2 برابر شده و باعث افزایش دمای جهان به مقدار C°1 در 50 سال گذشته شده است. اگرچه امروزه به‌کارگیری فناوری‌های نوین برای استفاده و ذخیره‌سازی کربن‌دی‌اکسید پیشنهاد شده؛ اما با این حال چالش‌هایی از جمله هزینه‌ها، موانع اقتصادی و عدم قطعیت‌های مربوط به تأثیرات زیستمحیطی وجود دارد. یک روش نویدبخش برای رفع این مسئله، استفاده از آنزیم کربنیک انیدراز است که روشی زیستمحیطی و فاقد هرگونه آلایندگی ثانویه‌ است. برای استفاده از آنزیم کربنیک انیدراز در حذف کربن‌دی‌اکسید، بهکارگیری آنزیم‌های پایدار در شرایط محیطی سخت، لازم و ضروری است. در این مقالۀ مروری تلاش شده است تا پیشرفت‌های به‌دست‌آمده در زمینۀ کاربرد این آنزیم‌ها، استراتژی‌های کارامد مهندسی در بهبود پایداری آن‌ها و روش‌های تثبیت این مواد بر روی سامانه‌های صنعتی مختلف، بررسی شود. افزون بر این، چالش‌های اخیر در استفادۀ صنعتی و نیز چشم‌انداز مربوط به این آنزیم در حفظ محیط زیست بحث و بررسی شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Feasibility of Using Carbonic Anhydrase in Bio Sequestration of Carbon Dioxide: Challenges and Opportunities

نویسندگان [English]

  • M. Maleki Kakelar 1
  • S. Hosseini 2
  • A. Mohammadi 3
1 Assistant Professor in Chemical Engineering, University of Zanjan
2 B. Sc. Student in Chemical Engineering, University of Zanjan
3 M. Sc. Student in Chemical Engineering, Sharif University of Technology
چکیده [English]

From 1990 to 2020, carbon dioxide emissions have dramatically increased (50%). It has already caused global warming and affected the environment and human health care. Moreover, carbon dioxide has dramatically increased up to 2 times in atmosphere since BCE, and the temperature of earth surface also raised 1°C from the past fifty years. Although novel technologies integrated carbon capture utilization and storage (CCUS) has been already proposed, there are still significant challenges such as cost, economic barriers, and uncertainties on environmental impacts. One promising way to mediate these issues is to utilization of carbonic anhydrase (CA) as enzyme in a eco-friendly manner without any secondary pollutants. In order to utilize CAs in carbon sequestration, high stable CAs on the extreme and harsh environment is essential. This review aims to present advanced developments in CA, efficient engineering strategies to improve
the productivity and stability, immobilization techniques towards an industrial operating system. Recent challenges in industrial CAs application as well as its 
usage perspective in environmental protection have been also discussed.
 

کلیدواژه‌ها [English]

  • Carbonic Anhydrase
  • Carbon Dioxide Emission
  • Carbon Sequestration
  • Enzyme Immobilization

 

[1]        Friedlingstein, P., Jones, M. W., O'Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., Le Quéré, C., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P, Bates, N. R., Becker, M., Bellouin, N., Bopp, L., Tuyet Trang Chau, T., Chevallier, F., Chini, L. P., Cronin, M., Currie, K. I., Decharme, B., Djeutchouang, L. M., Dou, X., Evans, W., Feely, R. A., Feng, L., Gasser, T., Gilfillan, D., Gkritzalis, T., Grassi, G., Gregor, L., Gruber, N., Gürses, Ö., Harris, I., Houghton, R. A., Hurtt, G. C., Iida, Y., Ilyina, T., Luijkx, I. T., Jain, A., Jones, S. D., Kato, E., Kennedy, D., Klein Goldewijk, K., Knauer, J., Korsbakken, J. I., Körtzinger, A., Landschützer, P., Lauvset, S. K., Lefèvre, N., Lienert, S., Liu, J., Marland, G., McGuire, P. C., Melton, J, R., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S., Niwa, Y., Ono, T., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, E., Rödenbeck, C., Rosan, T. M., Schwinger, J., Schwingshackl, C., Séférian, R., Sutton, A. J., Sweeney, C., Tanhua, T., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F., Van Der Werf, G. R., Vuichard, N., Wada, C., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Global Carbon Budget 2021", Earth Syst. Sci. Data Discuss.
[2]        McJeon, H., Mignone, B. K., O'Rourke, P., Horowitz, R., Kheshgi, H. S., Clarke, L., Kyle, P., Patel, P., Edmonds, J., "Fossil energy deployment through midcentury consistent with 2°C climate stabilization", Energy and Climate Change, p.100034, (2021).
[3]        Millar, R., Fuglestvedt, J., Friedlingstein, P., Rogelj, J., Grubb, M. J., Matthews, H. D., Skeie, R. b., Forster, P. M., Frame, D. J., Allen, M. R., "Emission budgets and pathways consistent with limiting warming to 1.5°C", Nature Geoscience, 10(10):
pp. 741-747, (2017).
[4]        Sanderson, B. M., O'Neill, B. C., Tebaldi, C., "What would it take to achieve the Paris temperature targets?", Geophysical Research Letters, 43(13):
pp. 7133-7142, (2016).
[5]        Patel, H. A., Byun, J., Yavuz, C. T., "Carbon Dioxide Capture Adsorbents: Chemistry and Methods", ChemSusChem, 10(7): pp. 1303-1317, (2017).
[6]        Lai, J. Y., Ngu, L. H., Hashim, S. S., "A review of CO2 adsorbents performance for different carbon capture technology processes conditions". Greenhouse Gases: Science and Technology, 11: pp. 1076-1117, (2021).
[7]        Bui, M., Adjiman, C. S., Bardow, A., Boston, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I, S., Petit, C., Puxty, G., Reimer, J., Reiner, D. M., Rubin, E. S., Scott, S. A., Shah, N., Smit, B., Trusler, J. P. M., Webley, P., Wilcoxx, J., Mac Dowell, N., Carbon capture and storage (CCS): the way forward", Energy & Environmental Science, 11(5): pp. 1062-1176, (2018).
[8]        Shakerian, F., Kim, K., Szulejko, J. E., Park, J., "A comparative review between amines and ammonia as sorptive media for post-combustion CO2 capture", Applied Energy, 148: pp. 10-22, (2015).
[9]        Spigarelli, B. P., Kawatra, S. K., "Opportunities and challenges in carbon dioxide capture", Journal of CO2 Utilization, 1: pp. 69-87, (2013).
[10]      Farrelly, D. J., Everard, C. D., Fagan, C. C., McDonnella, K. P., "Carbon sequestration and the role of biological carbon mitigation: A review", Renewable and Sustainable Energy Reviews, 21: pp. 712-727, (2013).
[11]      Jajesniak, P., Ali, H., Wong, T. S., "Carbon dioxide capture and utilization using biological systems: opportunities and challenges", Journal of Bioprocessing and Biotechniques, 4(155): p. 2, (2014).
[12]      Lin, W. R., Yu-Cheng, L., Po-Kuei, S., Shih-Ia, T., Chien-Hsiang, H., Chun-Yend, C., I-Son, N., "Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae", Journal of the Taiwan Institute of Chemical Engineers, 93: pp. 131-141, (2018).
[13]      Yew, G. Y., Lee, S. Y., Show, P. L., Tao, T., Law, C. L., Trung Chinh Nguyen, T., Chang, J., "Recent advances in algae biodiesel production: From upstream cultivation to downstream processing", Bioresource Technology Reports, 7: pp. 100227, (2019).
[14]      Bose, H., Satyanarayana, T., "Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives", Frontiers in Microbiology, 8(1615), (2017).
[15]      Liu, N., Bond, G. M., Abel, A., McPherson, B. J., Stringer, J., "Biomimetic sequestration of CO2 in carbonate form: Role of produced waters and other brines", Fuel Processing Technology, 86(14): pp. 1615-1625, (2005).
[16]      Smith, K. S., Ferry, J. G., "Prokaryotic carbonic anhydrases", FEMS Microbiology Reviews, 24(4): pp. 335-366, (2000).
[17]      Smith, K. S., Jakubzick, C., Whittam, T. S., Ferry, J. G., "Carbonic anhydrase is an ancient enzyme widespread in prokaryotes." Proc Natl Acad Sci U S A, 96(26): pp. 15184-9, (1999).
[18]      Kanth, B. K., Lee, J., Pack, S. P., "Carbonic anhydrase: Its biocatalytic mechanisms and functional properties for efficient CO2 capture process development", Engineering in Life Sciences, 13(5): pp. 422-431, (2013).
[19]      Lindskog, S., "Structure and mechanism of carbonic anhydrase", Pharmacology & Therapeutics, 74(1): pp. 1-20, (1997).
[20]      Sültemeyer, D., "Carbonic anhydrase in eukaryotic algae: characterization, regulation, and possible function during photosynthesis", Canadian Journal of Botany, 76(6): pp. 962-972, (1998).
[21]      Supuran, C. T., Capasso, C., "An Overview of the Bacterial Carbonic Anhydrases", Metabolites, 7(4): p. 56, (2017).
[22]      Yong, J. K. J., Stevens, G. W., Caruso, F., Kentish, S. E., "The use of carbonic anhydrase to accelerate carbon dioxide capture processes", Journal of Chemical Technology & Biotechnology, 90(1): pp. 3-10, (2015).
[23]      Banerjee, S., Deshpande, P. A., "On origin and evolution of carbonic anhydrase isozymes: A phylogenetic analysis from whole-enzyme to active site", Computational Biology and Chemistry, 61: pp. 121-129, (2016).
[24]      DiMario, R. J., Machingura, M. C., Waldrop, G. L., Moroney, J. V., "The many types of carbonic anhydrases in photosynthetic organisms", Plant Science, 268: pp. 11-17, (2018).
[25]      Jo, B. H., Seo, J. H., Cha, H. J., "Bacterial extremo-α-carbonic anhydrases from deep-sea hydrothermal vents as potential biocatalysts for CO2 sequestration", Journal of Molecular Catalysis B: Enzymatic, 109: pp. 31-39, (2014).
[26]      Dobrinski, K. P., Boller, A. J., Scott, K. M., "Expression and function of four carbonic anhydrase homologs in the deep-sea chemolithoautotroph Thiomicrospira crunogena", Applied and Environmental Microbiology, 76(11): pp. 3561-3567, (2010).
[27]      Liljas, A., Kannan, K. K., Bergstén, P. C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., Järup, L., Lövgren, S., Petef, M., "Crystal Structure of Human Carbonic Anhydrase C", Nature New Biology, 235(57): pp. 131-137, (1972).
[28]      Tripp, B. C., Smith, K., Ferry, J. G., "Carbonic Anhydrase: New Insights for an Ancient Enzyme*210", Journal of Biological Chemistry, 276(52): pp. 48615-48618, (2001).
[29]      Alber, B. E., Ferry, J. G., "A carbonic anhydrase from the archaeon Methanosarcina thermophila", Proceedings of the National Academy of Sciences, 91(15): pp. 6909-6913, (1994).
[30]      Kimber, M. S., Pai, E. F., "The active site architecture of Pisum sativum beta-carbonic anhydrase is a mirror image of that of alpha-carbonic anhydrases", Embo journal, 19(7): pp. 1407-18, (2000).
[31]      Smith, K. S., Ferry, J. G., "A Plant-Type Carbonic Anhydrase in the Thermophilic Methanoarchaeon Methanobacterium thermoautotrophicum", Journal of Bacteriology, 181(20): pp. 6247-6253, (1999).
[32]      Jeyakanthan, J., Rangarajan, S., Mridula, P., Kanaujia, S. P., Shiro, Y., Kuramitsu, S., Yokoyama S., Sekar K., "Observation of a calcium-binding site in the gamma-class carbonic anhydrase from Pyrococcus horikoshii", Acta Crystallogr D Biol Crystallogr, 64(Pt 10): pp. 1012-9, (2008).
[33]      Borchert, M., Knightdale, A. D. P. S., "Heat-stable carbonic anhydrases and their use", US Patent US7803575, p. 29, (2010).
[34]      Merle, G., Fradette, S., Madore, E., Barralet, J. E., "Electropolymerized Carbonic Anhydrase Immobilization for Carbon Dioxide Capture", Langmuir, 30(23): pp. 6915-6919, (2014).
[35]      Tosa, T., Mori, T., Fuse, N., Chibata, I., "Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase", Enzymologia, 31(4): pp. 214-24, (1966).
[36]      Eş, I., Vieira, J. D. G., Amaral, A. C., "Principles, techniques, and applications of biocatalyst immobilization for industrial application", Applied Microbiology and Biotechnology, 99(5):
pp. 2065-2082, (2015).
[37]      Mohamad, N. R., Marzuki, N. H. C., Buang, N, A., Huyop, F., Wahab, R. A., "An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes", Biotechnology & Biotechnological Equipment, 29(2): pp. 205-220, (2015).
[38]      Brena, B., González-Pombo, P., Batista-Viera, F., "Immobilization of enzymes: a literature survey", Methods in Molecular Biology, 1051: pp. 15-31, (2013).
[39]      Nelson, J. M., Griffin, E. G., "ADSORPTION OF INVERTASE", Journal of the American Chemical Society, 38(5): pp. 1109-1115, (1916).
[40]      Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y. I., Nam, S. C., "Immobilization of carbonic anhydrase on spherical SBA-15 for hydration and sequestration of CO2", Colloids and Surfaces B: Biointerfaces, 90: pp. 91-96, (2012).
[41]      Faridi, S., Bose, H., Satyanarayana, T., "Utility of Immobilized Recombinant Carbonic Anhydrase of Bacillus halodurans TSLV1 on the Surface of Modified Iron Magnetic Nanoparticles in Carbon Sequestration", Energy & Fuels, 31(3): pp. 3002-3009, (2017).
[42]      Kanbar, B., Ozdemir, E. "Thermal stability of carbonic anhydrase immobilized within polyurethane foam", Biotechnology Progress, 26(5): pp. 1474-1480, (2010).
[43]      Sahoo, P. C., Sambudi, N. S., Park, S. B., Lee, J. H., Han, J., "Immobilization of Carbonic Anhydrase on Modified Electrospun Poly (Lactic Acid) Membranes: Quest for Optimum Biocatalytic Performance", Catalysis Letters, 145(2): pp. 519-526, (2015).
[44]      Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Nam, S. C., Yoon, Y., "Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2 Sequestration", Chemistry – A European Journal, 18(38): pp. 12028-12034, (2012).
[45]      Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y. I., Nam, S. C., "Capture and Sequestration of CO2 by Human Carbonic Anhydrase Covalently Immobilized onto Amine-Functionalized SBA-15", The Journal of Physical Chemistry C, 115(41): pp. 20209-20216, (2011).
[46]      Jing, G., Pan, F., Lv, B., Zhou, Z., "Immobilization of carbonic anhydrase on epoxy-functionalized magnetic polymer microspheres for CO2 capture", Process Biochemistry, 50(12): pp. 2234-2241, (2015).
[47]      Brady, D., Jordaan, J., "Advances in enzyme immobilisation", Biotechnology Letters, 31(11): pp. 1639, (2009).
[48]      Park, J. M., Kim, M., Lee, H. J., Jang, A., Min, J., Kim, Y. H., "Enhancing the Production of Rhodobacter sphaeroides-Derived Physiologically Active Substances Using Carbonic Anhydrase-Immobilized Electrospun Nanofibers", Biomacromolecules, 13(11): pp. 3780-3786, (2012).
[49]      Perfetto, R., Del Prete, S., Vullo, D., Sansone, G., Barone, C. M. A., Rossi, M., Supuran, C. T., Capasso, C., "Production and covalent immobilisation of the recombinant bacterial carbonic anhydrase (SspCA) onto magnetic nanoparticles", Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1): pp. 759-766, (2017).
[50]      Kim, C. S., Yang, Y. J., Bahn, S. Y., Cha, H. J., "A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration", NPG Asia Materials, 9(6): pp. e391-e391, (2017).
[51]      Jo, B. H., Seo, J. H., Yang, Y. J., Baek, K., Choi, Y. S., Pack, S. P., Oh, S. H., Cha, H. J., "Bioinspired Silica Nanocomposite with Autoencapsulated Carbonic Anhydrase as a Robust Biocatalyst for CO2 Sequestration", ACS Catalysis, 4(12): pp. 4332-4340, (2014).
[52]      Min, K. H., Son, R. G, Ki, M. R., Choi, Y. S., Pack S. P., "High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development", Chemosphere, 143: pp. 128-134, (2016).
[53]      Schlegel, S., Genevaux, P., de Gier, J. W., "Isolating Escherichia coli strains for recombinant protein production", Cellular and Molecular Life Sciences, 74(5): pp. 891-908, (2017).
[54]      Bilal, M., Asgher, M., Shahid, M., Bhatti, H. N., "Characteristic features and dye degrading capability of agargel immobilized manganese peroxidase", International Journal of Biological Macromolecules, 86: pp. 728-740, (2016).
[55]      Tan, S. I., Han, Y. L., Yu, Y. J., Chiu, C. Y., Chang, Y. K., Ouyang, S., Fan, K. C., Lo, K. H., Ng, I. S., "Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase", Process Biochemistry, 73: pp. 38-46, (2018).
[56]      González, J. M., Fisher, S. Z., "Carbonic anhydrases in industrial applications", Subcellular Biochemistry, 75: pp. 405-26, (2014).
[57]      Hicks, N., Vik, U., Taylor, P., Ladoukakis, E., Park, J., Kolisis, F., Jakobsen, K. S., "Using Prokaryotes for Carbon Capture Storage", Trends in Biotechnology, 35(1): pp. 22-32, (2017).
[58]      Bhattacharya, S., Schiavone, M., Chakrabarti, S., Bhattacharya, S. K., "CO2 hydration by immobilized carbonic anhydrase", Biotechnol Appl Biochem, 38(Pt 2): pp. 111-7, (2003).
[59]      Yadav, R. R., Krishnamurthi, K., Mudliar, S. N., Devi, S. S., Naoghare, P. K., Bafana, A., Chakrabarti, T., "Carbonic anhydrase mediated carbon dioxide sequestration: Promises, challenges and future prospects", Journal of Basic Microbiology, 54(6): pp. 472-481, (2014).
[60]      Bao, L., Trachtenberg, M. C., "Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline", Journal of Membrane Science, 280(1): pp. 330-334, (2006).
[61]      Boone, C. D., Gill, S., Habibzadegan, A., McKenna, R., "Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications", International Journal of Chemical Engineering, 2013: p. 813931, (2013).
[62]      Effendi, S. S. W., Ng, I. S., "The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review", Process Biochemistry, 87: pp. 55-65, (2019).