اصول الکتروشیمی پیل سوختی پلیمری و عوامل مؤثر بر عملکرد آن

نوع مقاله : مقاله مروری

نویسنده

استادیار مهندسی شیمی، دانشگاه ارومیه

چکیده

مجموعۀ الکترود غشا (MEA) واحد کلیدی از سلول‌های سوختی غشای تبادل پروتون است. مواد، ساختارها، اجزا و فناوری‌‌های ساخت MEA تأثیرهایی قوی بر عمل‌کرد پیل سوختی مربوطه دارند. به‌طور خاص، لایه‌های کاتالیست، جایی‌که واکنش‌های الکتروشیمیایی انجام می‌شود، مهم‌ترین اجزای MEA هستند. در چند دهۀ گذشته، برای توسعۀ پیل‌های سوختی پلیمری با کارایی بالا بسیار تلاش شده است. عمل‌کرد MEA با لایه‌های کاتالیست پیشرفته، به‌طور چشم‌گیری با استفاده از روش‌های گوناگون ساخت، تغییر ساختار لایۀ کاتالیست و استفاده از اجزای مختلف، بهبود یافته است. در طول بهینه‌سازی عمل‌کرد پیل سوختی پلیمری، نحوۀ ارزیابی لایه‌های کاتالیزور و MEA مربوط به آن‌ها حیاتی می‌شود. هدف اصلی چنین ارزیابی‌ای، درک رابطۀ بین عمل‌کرد پیل سوختی و ساختارها/ترکیبات اجزای مجموعۀ الکترود غشاست. بر اساس این درک، بهینه‌سازی لایۀ کاتالیزور/MEA با توجه به عمل‌کرد می‌تواند از نظر مواد به‌کار رفته، ترکیبات اجزا و شاخص‌های ساخت انجام شود. با بهینه‌سازی لایه‌های کاتالیست و MEAها، می‌توان استفاده از کاتالیزور را بهبود بخشید؛ پتانسیل مازاد نفوذ گاز را کاهش داد و تلفات اهمی غشا را کم کرد، در حالی‌که مدیریت آب درون لایه‌های کاتالیست/MEAs نیز می‌تواند بهبود یابد. بنابراین، ارزیابی لایۀ کاتالیست/MEA یک گام ضروری در توسعۀ پیل سوختی است. بر این اساس، بسیاری از روش‌های الکتروشیمیایی برای ارزیابی عمل‌کرد لایۀ کاتالیست/MEA توسعه یافته‌اند. در این مقالۀ مروری، اصول و روش‌های ارزیابی لایۀ کاتالیست/MEA با جزئیات تحلیل‌ها معرفی شده‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Electrochemical Fundamentals of Polymer Fuel Cells and Factors Affecting its Performance

نویسنده [English]

  • Maryam Yaldagard
Assistant Professor of Chemical Engineering, Urmia University
چکیده [English]

The membrane electrode assembly (MEA) is a key unit of proton exchange membrane (PEM) fuel cells. The MEA materials, structures, components and fabrication technologies have strong effects on the corresponding fuel cell performance. In particular, the catalyst layers, where the electrochemical reactions take place, are the most important components. Over the past several decades, many efforts have been made to develop high performance PEM fuel cells. MEA performance with advanced catalyst layers has been significantly improved by employing different fabrication methods, changing the catalyst layer structures, and using different components. During PEM fuel cell performance optimization, how to evaluate catalyst layers and their corresponding MEAs becomes critical. The major purpose of such an evaluation is to understand
the relationship between fuel cell
performance and MEA component structures/compositions. Based on this understanding, catalyst layer/MEA optimization with respect to performance can be carried out in terms of materials used, component compositions, and fabrication parameters. Through optimizing the catalyst layers and MEAs, catalyst utilization can be improved, gas diffusion overpotential reduced, and membrane ohmic losses decreased, while water management inside the catalyst layers/MEAs can also be improved. Therefore, catalyst layer/MEA evaluation is a necessary step in fuel cell development. Accordingly, many electrochemical methods have been developed to evaluate the performance of the catalyst layer/MEA. In this review paper, the principles and methods of catalyst layer/MEA evaluation have been introduced, with some detailed analysis.

کلیدواژه‌ها [English]

  • Electrochemical Evaluation methods
  • Catalyst layer
  • Membrane Electrode Assembly
  • Polymer Fuel Cells

 

[1]        Zhang, J., "PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications", Springer, Canada, pp. 1-1137, (2008).
[2]        Kaur, G., "PEM Fuel Cells: Fundamentals, Advanced Technologies, and Practical Application", Elsevier, Canada, p. 584, (2021).
[3]        Barbir, F., "PEM fuel cells: theory and practice", Academic press, UK, pp.17-30, (2013).
[4]        Zhang, J., Wu, J., Zhang, H., Zhang, J., "PEM fuel cell testing and diagnosis", Newnes, UK, pp. 1-600, (2013).
[5]        Wang, H., Yuan, X. -Z., Li, H., "PEM fuel cell diagnostic tools", CRC press, US, pp. 1-578 (2019).
[6]        Wu, J., Yuan, X. Z., Wang, H., Blanco, M., Martin, J. J., Zhang, J., "Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques", International journal of hydrogen energy, 33: pp. 1735-1746, (2008).
[7]        https://physics.nist.gov/MajResFac/NIF/pemFuelCell
s.html, availble on may 2006.
[8]        Chu, D., Jiang, R., "Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks: part I. Evaluation and simulation of an air-breathing PEMFC stack", Journal of Power Sources, 83: pp. 128-133, (1999).
[9]        Pukrushpan, J. T., Stefanopoulou, A. G., Peng, H., "Control of fuel cell power systems: principles, modeling, analysis and feedback design", Springer, pp. 1-178, (2004).
[10]      Amphlett, J. C., Baumert, R., Mann, R. F., Peppley, B. A., Roberge, P. R., Harris, T. J., "Performance modeling of the Ballard Mark IV solid polymer electrolyte fuel cell I. Mechanistic model development", Journal of the Electrochemical Society, 142: pp. 1-8, (1995).
[11]      Sasikumar, G., Ihm, J., Ryu, H., "Optimum Nafion content in PEM fuel cell electrodes", Electrochimica Acta, 50: pp. 601-605, (2004).
[12]      Hoare, J., "On the interaction of oxygen with platinum", Electrochimica Acta, 27: pp. 1751-1761, (1982).
[13]      Kumpulainen, H., Peltonen, T., Koponen, U., Bergelin, M., Valkiainen, M., Wasberg, M., "In situ voltammetric characterization of PEM fuel cell catalyst layers", Technical Research Centre of Finland. Research Notes: p. 28, (2002).
[14]      Wang, J., Yin, G. -P., Zhang, J., Wang, Z., Gao, Y., "High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52: pp. 7042-7050, (2007).
[15]      Culity, B., Stock, S., "Elements of X-ray Diffraction", Edison Wesley, London, (1978).
[16]      Pozio, A., De Francesco, M., Cemmi, A., Cardellini, F., Giorgi, L., "Comparison of high surface Pt/C catalysts by cyclic voltammetry", Journal of Power Sources, 105: pp. 13-19, (2002).
[17]      Wang, X., Hsing, I., "Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells", Electrochimica Acta, 47: pp. 2981-2987, (2002).
[18]      Mukerjee, S., Srinivasan, S., Appleby, A. J., "Effect of sputtered film of platinum on low platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells", Electrochimica Acta, 38: pp. 1661-1669, (1993).
[19]      Bockris, J. O. M., Conway, B. E., Yeager, E., White, R. E.,"Comprehensive treatise of electrochemistry", Vol. 8. Springer, pp. 1-616, (1985).
[20]      Wang, B., "Recent development of non-platinum catalysts for oxygen reduction reaction", Journal of Power Sources, 152: pp. 1-15, (2005).
[21]      Antoine, O., Bultel, Y., Durand, R., "Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside
Nafion< sup>®", Journal of Electroanalytical Chemistry, 499: pp. 85-94, (2001).
[22]      Adzic, R., Recent advances in the kinetics of oxygen reduction. Brookhaven National Lab., Upton, NY (United States), (1996),
[23]      Debe, M. K., Schmoeckel, A. K., Vernstrom, G. D., Atanasoski, R., "High voltage stability of nanostructured thin film catalysts for PEM fuel cells", Journal of Power Sources, 161: pp. 1002-1011, (2006).
[24]      Gharibi, H., Razavizadeh, B., Rafati, A., "Electrochemical studies associated with the micellization of dodecyltrimethyl ammonium bromide (DOTAB) in aqueous solutions of ethanol and 1-propanol", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136: pp. 123-132, (1998).
[25]      Mukerjee, S., Srinivasan, S., "Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells", Journal of Electroanalytical Chemistry, 357:
pp. 201-224, (1993).
[26]      Thompsett, D., "Pt alloys as oxygen reduction catalysts", Handbook of Fuel Cells, Fundamentals, Technology and Applications ,Fuel Cell Technology and Applications,Polymer electrolyte membrane fuel cells and systems (PEMFC),Electro-catalysts,  John Wiley & Sons, Ltd, pp.1-14, (2010).
[27]      Mukerjee, S., Srinivasan, S., Soriaga, M. P.,McBreen, J., "Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction An in situ XANES and EXAFS investigation", Journal of the Electrochemical Society, 142:pp. 1409-1422, (1995).
[28]      Mukerjee, S., Srinivasan, S., "O2 reduction and structure‐related parameters for supported catalysts", Handbook of Fuel Cells, Fundamentals, Technology and Applications. Electrocatalysis,The oxygen reduction/evolution reaction, John Wiley & Sons, Ltd, pp. 1-18, (2010).
[29]      Stamenkovic, V. R., Mun, B. S., Mayrhofer, K. J., Ross, P. N., Markovic, N. M., "Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces", Journal of The American Chemical Society, 128: pp. 8813-8819, (2006).
[30]      Stamenkovic, V. R., Mun, B. S., Arenz, M., Mayrhofer, K. J., Lucas, C. A., Wang, G., Ross, P. N.,Markovic, N. M., "Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces", Nature materials, 6: pp. 241-247, (2007).
[31]      Lee, M. H., Do, J. S., "Kinetics of oxygen reduction reaction on Co rich core-Pt rich shell/C electrocatalysts", Journal of Power Sources, 188:
pp. 353-358, (2009).
[32]      Mustain, W. E.,Prakash, J., "Kinetics and mechanism for the oxygen reduction reaction on polycrystalline cobalt–palladium electrocatalysts in acid media", Journal of Power Sources, 170: pp. 28-37, (2007).
[33]      Balbuena, P., Altomare, D., Agapito, L.,Seminario, J., "Theoretical analysis of oxygen adsorption on Pt-based clusters alloyed with Co, Ni, or Cr embedded in a Pt matrix", The Journal of Physical Chemistry B, 107: pp. 13671-13680, (2003).
[34]      Kinoshita, K., "Electrochemical oxygen technology", Willey, New York, pp. 1-448, (1992).
[35]      Shackelford, J. F., Alexander, W., "CRC materials science and engineering handbook", CRC press, (2010).
[36]      Appleby, A., "Electrocatalysis and fuel cells", Catalysis Reviews, 4: pp. 221-244, (1971).
[37]      Rao, M., Damjanovic, A., Bockris, J. O. M., "Oxygen adsorption related to the unpaired d-electrons in transition metals", The Journal of Physical Chemistry, 67: pp. 2508-2509, (1963).
[38]      Yuan, X. -Z., Song, C., Wang, H., Zhang, J., "Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications", Springer,. pp. 1-428, (2010).
[39]      Tang, Y., Zhang, J., Song, C., Liu, H., Zhang, J., Wang, H., Mackinnon, S., Peckham, T., Li, J., McDermid, S., "Temperature dependent performance and in situ AC impedance of high-temperature PEM fuel cells using the Nafion-112 membrane", Journal of the Electrochemical Society, 153: p. A2036, (2006).
[40]      Xie, Z., Song, C., Andreaus, B., Navessin, T., Shi, Z., Zhang, J.,Holdcroft, S., "Discrepancies in the measurement of ionic conductivity of PEMs using two-and four-probe AC impedance spectroscopy", Journal of the Electrochemical Society, 153: p. E173, (2006).