به‌کارگیری فرایندهای غشایی در تأمین و توسعۀ آب و انرژی پایدار

نوع مقاله : مقاله مروری

نویسندگان

1 کارشناسی ارشد مهندسی شیمی، پژوهشگاه نیرو

2 دکتری شیمی، پژوهشگاه نیرو

3 دکتری مهندسی شیمی و محیط زیست، پژوهشگاه صنعت نفت

4 استادیار مهندسی شیمی، پژوهشگاه نیرو

چکیده

افزایش تقاضای انرژی و کمبود آب تمیز در نتیجۀ شهرنشینی، رشد جمعیت و ایجاد اختلال در آب و هوا به چالشی جهانی تبدیل شده است. فناوری غشایی، می­تواند نقش ویژه­ای در تصفیه، شیرین‌سازی آب و تأمین آب فرایندی مورد نیاز نیروگاه­ها داشته باشد. فرایندهای غشایی دارای برتری‌های مشخصی از جمله کیفیت بالای آب با نگهداری آسان، پساب لجن شیمیایی کم، انتخاب­پذیری و انتقال گزینشی اجزای مورد نظر، تطابق و قابلیت به‌کارگیری مناسب در فرایندهای یک‌پارچه، پایین‌بودن انرژی مصرفی، سازگاری با محیط زیست و کنترل­ پذیری مناسب هستند. هم‌چنین با به‌کارگیری این فناوری در باتری­ها و پیل­های سوختی و استفاده از جنس و ساختار غشایی مناسب قابلیت تولید انرژی الکتریکی پاک، پایدار و کارامد وجود خواهد داشت. منظور از انرژی پایدار، نوعی از انرژی است که می­تواند به‌طور نامحدود و بدون تأثیرگذاری بر محیط زیست و نیز به پایان رسیدن منبع، مورد استفاده قرار گیرد. علاوه بر آن، استفاده از فرایندهای غشایی در تولید و خالص‌سازی سوخت­های زیستی و جداسازی و بازیابی آلاینده­های گازی از دیگر موارد مهم و مورد مطالعۀ صنعت آب و انرژی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Membrane Processes in Supply and Development of Sustainable Water and Energy in Country

نویسندگان [English]

  • S. Davoudi Darzi 1
  • F. Hashmi Nasr 2
  • F. Sadeghi 3
  • A. Khalili-Garakani 4
1 M. Sc. in Chemical Engineering, Niroo Research Institute (NRI)
2 Ph. D. in Chemistry, Niroo Research Institute (NRI)
3 Ph. D. in Chemical & Environmental Engineering, Research Institute of Petroleum Industry (RIPI)
4 Assistant Professor of Chemical Engineering, Niroo Research Institute (NRI)
چکیده [English]

Increased energy demand and lack of clean water as a result of urbanization, population growth, and climate change have become global challenges. Membrane technology can play a special role in water purification, desalination and supplying process water required by power plants. Membrane processes have certain advantages, including high quality water with easy maintenance, low chemical sludge effluent, selectivity and selective transfer of desired components, appropriate adaptability and applicability in integrated processes, low energy consumption, environmental friendliness and good controllability. Also, using this technology in batteries and fuel cells and select the right material and membrane structure, there will be the ability to produce clean, sustainable and efficient electrical energy. Sustainable energy is a type of energy that can be used indefinitely without affecting the environment and the depletion of the resource. In addition, the use of membrane processes in the production and the purification of biofuels and the separation and recovery of gaseous pollutants are other important issues studied in water and energy industry.
 

کلیدواژه‌ها [English]

  • Membrane Processes
  • Water Treatment
  • Energy
  • Bioreactors
  • Batteries
[1]        Crespo, J. G., Böddeker, K. W., "Membrane processes in separation and purification", Springer Science & Business Media, 272, (2013).
[2]        Buonomenna, M., Bae, J., "Membrane processes and renewable energies", Renewable and Sustainable Energy Reviews, 43: pp. 1343-1398, (2015).
[3]        Junejo, F., Saeed, A., Hameed, S., 5.19 energy management in ocean energy systems (2018).
[4]        Nath, K., "Membrane Separation Processes", PHI Learning Private Limited, Delhi, second edition, (2017).
[5]        Judd, S. J., "Membrane technology costs and me", Water research, 122: pp. 1-9, (2017).
[6]        Alzahrani, S., Mohammad, A. W., "Challenges and trends in membrane technology implementation for produced water treatment: A review", Journal of Water Process Engineering, 4: pp. 107-133, (2014).
[7]        Wang, X., Chang, V. W., Tang, C. Y., "Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation: Advances, challenges, and prospects for the future", Journal of membrane science, 504: pp. 113-132, (2016).
[8]        Li, L., Visvanathan, C., "Membrane technology for surface water treatment: advancement from microfiltration to membrane bioreactor", Reviews in Environmental Science and Bio/Technology, 16(4): pp. 737-760, (2017).
[9]        Mallevialle, J., Odendaal, P. E., Wiesner, M. R., "Water treatment membrane processes", American Water Works Association, (1996).
[10]      Wu, W., Shi, Y., Liu, G., Fan, X., Yu, Y., "Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review", Desalination, 491, 114452, (2020).
[11]      Zhai, Z., Zhao, N., Liu, J., Dong, W., Li, P., Sun, H., Niu, Q. J., "Advanced nanofiltration membrane fabricated on the porous organic cage tailored support for water purification application", Separation and Purification Technology, 230, 115845, (2020).
[12]      Abdel-Fatah, M. A., "Nanofiltration systems and applications in wastewater treatment", Ain Shams Engineering Journal, 9(4): pp. 3077-3092, (2018).
[14]      Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., Moulin, P., "Reverse osmosis desalination: Water sources, technology, and today's challenges", Water Research, 43: pp. 2317-2348, (2009).
[15]      Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R. V., Missimer, T., Lattemann, S., "Membrane-based seawater desalination: Present and future prospects", Desalination, 401: pp. 16-21, (2017).
[16]      Binger, Z. M., Achilli, A., "Forward osmosis and pressure retarded osmosis process modeling for integration with seawater reverse osmosis desalination", Desalination 491, 114583, (2020).
[17]      Voutchkov, N., "Energy use for membrane seawater desalination – current status and trends", Desalination, 431: pp. 2-14, (2018).
[18]      Thabit, M. S., Hawari, A. H., Hafez Ammar, Mhd., Zaidi, S., Zaragoza, G., Altaee, A., "Evaluation of forward osmosis as a pretreatment process for multi stage flash seawater desalination", Desalination, 461: pp. 22-29, (2019).
[19]      Strathmann, H., "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264: pp. 268-288, (2010).
[20]      Lee, H., Jin, Y., Hong, S., "Recent transitions in ultrapure water (UPW) technology: Rising role of reverse osmosis (RO) ", Desalination, 399: pp. 185-197, (2016).
[21]      Institute of Standards and Industrial Research of Iran. Drinking water-Physical and chemical specifications, No 1053 [Online]. [cited 1997]; Available from: URL: http://www.environmentlab.ir/standards/water-drink-standard-1053.pdf
[22]      Turek, M., Mitko, K., "Ultra-pure water production by integrated electrodialysis-ion exchange/ electrodeionization", Membrane Water Treatment, 4: pp. 237-249, (2013).
[23]      Karakulski, K., Gryta, M., Sasim, M., "Production of process water using integrated membrane processes", Chemical Papers, 60: pp. 416–421, (2006).
[24]      Careta, L. O., Begnini, M. L., Pereira Lima, E. A., Delalibera Finzer, J. R., "Processing of residual water by reverse osmosis, International Journal of Hydrology", 3: pp. 436-440, (2019).
[25]      Quist-Jensen, C. A., Macedonio, F., Drioli, E., "Membrane technology for water production in agriculture: Desalination and wastewater reuse", Desalination, 364, 17-32, 2015.
[26]      Rezakazemi, M., Khajeh, A., Mesbah, M., "Membrane filtration of wastewater from gas and oil production", Environmental Chemistry Letters, 16: pp. 367–388, (2018).
[27]      Liu, C., Takagi, R., Shintani, T., Cheng, L., Lun Tung, K., Matsuyama, H., "Organic Liquid Mixture Separation Using an Aliphatic Polyketone-Supported Polyamide Organic Solvent Reverse Osmosis (OSRO) Membrane", ACS Applied Materials Interfaces, 12: pp. 7586–7594, (2020).
[28]      Chau, J., Basak, P., Sirkar, K. K., "Reverse osmosis separation of particular organic solvent mixtures by a perfluorodioxole copolymer membrane", Journal of Membrane Science, 563: pp. 541-551, (2018).
[29]      Talaeian Iraqi, M., Goodarzvand Chegini, A., Moradi, Sh., "Study of wastewater from the operation of various units of a thermal power plant", The Second International Conference on Engineering and Applied Sciences, (In Persian), (2016).
[30]      Duong, H. C., Pham, T. M., Luong, S. T., Nguyen, K. V., Nguyen, D. T., Ansari, J. A., Long D. Nghiem, "A novel application of membrane distillation to facilitate nickel recovery from electroplating wastewater", Environmental Science and Pollution Research, 26: pp. 23407–23415, (2019).
[31]      Anderson, D. K., "Concentration of dilute industrial wastes by direct osmosis", (1977).
[32]      Haupt, A., Lerch, A., "Forward osmosis application in manufacturing industries: A short review", Membranes, 8: pp. 47, (2018).
[33]      Khalili-Garakani, A., Mostofi, N., Sarrafzadeh, M. H., Sadeghi, F., Hosseinzadeh, M., Fatourechi, H., Mehrnia, M. R., "Comparison of Different Models for Rheological Characterization of Activated Sludge", Iranian Journal of Health, Science & Engineering, 8: pp. 255-264, (2011).
[34]      Cong, N.,  Shiao-Shing, N., Hung-Yin, C., Nguyen, Y., Hau, T., "Application of forward osmosis on dewatering of high nutrient sludge", Bioresource Technology, 132: pp. 224-229, (2013).
[35]      Suzaimi, N. D., Goh, P. S., Ismail, A. F., Mamah, S. C., "Strategies in Forward Osmosis Membrane Substrate Fabrication and Modification: A Review", Membranes, 10: pp. 332-374, (2020).
[36]      Thomas, I., Peters, A., "Purification of landfill leachate with membrane filtration", Filtration & Separation, 35: pp. 33-36, (1998).
[37]      Khalili-Garakani, A., Mehrnia, M. R., Wali, M., Sarrafzadeh, M. H., "Hydrodynamic simulation of membrane bioreactors in the treatment of petrochemical wastewaters using computational fluid dynamics", the first petrochemical conference in Iran, (In Persian), (2010).
[38]      Khalili-Garakani, A., Mehrnia, M. R., Mostofi, N., Sarrafzadeh, M. H., "Flow Characteristics in an Airlift Membrane Bioreactor", Chemical Product & Process Modeling journal, 4, article18, (2009),
[39]      Sadeghi, F., Sarrafzadeh, M. H., Nabizadeh, R., Azami, H., Khalili-Garakani, A., Mehrnia, M. R., "Biological treatment of wastewater containing acetate and phosphate ions in a membrane bioreactor", Presented in International Conference on Advanced Wastewater Treatment &Reuse, University of Tehran, Tehran, Iran, 10-12 November (2009).
[40]      Khalili-Garakani, A., Mehrnia, M. R., Mostofi, N., Sarrafzadeh, M. H., "A New Approach to Analysis and Control of Fouling in Airlift Membrane Bioreactors", Process Biochemistry Journal, 46: pp. 1138-1145, (2011).
[41]      Hosseinzadeh, M., Mehrnia, M. R., Mostofi, N., Khalili-Garakani, A., "New approach to modelling of biofouling in a submerged membrane bioreactor (sMBR) ", Presented in IWA Regional Conference and Exhibition on Membrane Technology and Water Reuse, Istanbul, Turkey, 18-22 October (2010).
[42]      Ramon, G. Z., Feinberg, B. J., Hoek, E. M. V., "Membrane-based production of salinity-gradient powe"r. Energy Environ. Sci., 4: pp. 4423-4434, (2011).
[43]      Straub, A. P., Deshmukh, A., Elimelech, M., "Pressure-retarded osmosis for power generation from salinity gradients: is it viable? " Energy Environment Science, 9: pp. 31-48, (2016).
[44]      Lee, H., Yanilmaz, M., Toprakci, O., Fu, K., Zhang, X., "A review of recent developments in membrane separators for rechargeable lithium-ion batteries", Energy Environment Science, 7: pp. 3857-3886, (2014).
[45]      Costamagna, P., "Transport phenomena in polymeric membrane fuel cells", Chemical engineering science, 56(2): pp. 323-332 (2001).
[46]      Wang, Y., Mishler, J., Chan Cho, S., Cordobes Adroher, X., "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research", Applied Energy, 88: pp. 981-1007, (2011).
[47]      Zakaria, Z., Shaari, N., Kamarudin, S. K., Bahru, R., Taufiq Musa, M., "A review of progressive advanced polymer nanohybrid membrane in fuel cell application", Energy Research, 44: pp. 8255-8295, (2020).
[48]      Abouzari-Lotf, E., Jacob, M. V., Ghassemi, H., "Highly conductive anion exchange membranes based on polymer networks containing imidazolium functionalised side chains", Scientific Reports, 11: pp. 3764, (2021).
[49]      Jacobson, A. J., "Materials for solid oxide fuel cells", Chemistry of Materials, 22(3): pp. 660-674, (2010).
[50]      Meulenberg, W., Ivanova, M., Serra, J., Roitsch, S., "Proton-conducting ceramic membranes for solid oxide fuel cells and hydrogen (H2) processing", In Advanced membrane science and technology for sustainable energy and environmental applications: pp. 541-567, (2011).
[51]      Culcasi, A., Gurreri, L., Micale, G., Tamburini, A., "Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by a validated process model", Journal of Environmental Management, 287, p. 112319, (2021).
[52]      Tufa, R. A., Curcio, E., Fontananova, E., Profio, G. D., "Membrane-Based Processes for Sustainable Power Generation Using Water: Pressure-Retarded Osmosis (PRO), Reverse Electrodialysis (RED), and Capacitive Mixing (CAPMIX)", in "Membrane-Based Processes for Sustainable Power Generation Using Water", Elsevier, (2017).
[54]      Hafeez, S., Al-Salem, S. M., Manos, G., Constantinou, A., "Fuel production using membrane reactors: a review", Environmental Chemistry Letters, 18: pp. 1477–1490, (2020).
[55]      Chakraborty, S., Rusli, H., Nath, A., " Immobilized biocatalytic process development and potential application in membrane separation: a review", Critical Reviews in Biotechnology, 36: pp. 43-58, (2014).
[56]      Uemiya, S., "Brief review of steam reforming using a metal membrane reactor", Topics in Catalysis, 29: pp. 79-84, (2004).
[57]      Sigurdardóttir, S. B., Lehmann, J., Ovtar, S., "Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials", Advanced synthesis & catalysis, 360: pp. 2578-2607, (2018).
[58]      Ahmadi, A., Sarrafzadeh, M. H., Mohamadi, M., Mahdigholian, Z., Hosseinian, A., "Investigation on polysulfone blended NH2-MIL125 (Ti) membrane for photocatalytic degradation of Methylene Blue dye. Journal of Water and Environmental Nanotechnology", 5(3): pp. 234-245 (2020).
[59]      Ma, S., Meng, J., Li, J., Zhang, Y., Ni, L., "Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation of dyes in water", Journal of membrane science, 453: pp. 221-229, (2014).
[60]      Kandath Valappil, R. S., Ghasem, N.,  Al-Marzouqi, M., "Current and future trends in polymer membrane-based gas separation technology: A comprehensive review", Journal of Industrial and Engineering Chemistry, 98: pp. 103-129, (2021).
[61]      Semenova, S. L., "Polymer membranes for hydrocarbon separation and removal", Journal of Membrane Science, 231: pp. 189–207, (2004).
[62]       Miyagi, A., Nabetani, H., Nakajima, M., "Analysis of transport mechanism of binary organic solvent system through a PDMS-based dense membrane using a regular solution model combined with a solution-diffusion model", Separation and Purification Technology, 88: pp. 216-226, (2012).
[63]      Yang, B., Yuan, W., Gao, F., "A review of membrane-based air dehumidification", Indoor and Built Environment, 24: pp. 11-26, (2015).
[64]      Robb, W. L., "Carbon Dioxide–Oxygen Separation: Facilitated transport of carbon dioxide across a liquid film", Science 156: pp. 1481, (1967).
[65]      He, X., Lei, L., Chu, Y., "Chapter 9 - Facilitated Transport Membranes for CO2 Removal from Natural Gas, Current Trends and Future Developments on (Bio-) Membranes Carbon Dioxide Separation/Capture by Using Membranes": pp. 261-288, (2018).
[66]      Y. He, D. M. Bagley, K. T. Leung, S. N. Liss, B. Q. Liao, "Recent advances in membrane technologies for biorefining and bioenergy production", Biotechnology Advances, 30, pp. 817-858, 2012.
[67]      A. Figoli, A. Cassano, A. Basile, "Part Three: Integrated membrane operations for biofuel production", in "Membrane Technologies for Biorefining, Pages 483-500, Elsevier, 2016.