بررسی استخراج پروتئین از ریزجلبک با استفاده از روش‌های مختلف پیش‌تیمار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه صنعتی سهند

2 مرکز تحقیقات بیوتکنولوژی، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز

چکیده

ریزجلبک­ها بهدلیل داشتن پروتئینِ با ارزش غذایی بالا، سرعت رشد سریع و توانایی زندهماندن در شرایط سخت، جزء امیدوارکنندۀ منابع پروتئین هستند. در این تحقیق، ابتدا کشت گونههای مختلف و نامعین ریزجلبک در فتوبیو راکتورهای صفحهای تخت انجام شد و برای اولینبار، فرایند استخراج پروتئین از زیستتودۀ ریزجلبک مختلط با استفاده از روش­های مختلف پیشتیمار از قبیل اتولیز، آبکافت با اسید و باز، آبکافت به‌وسیلۀ امواج فراصوت و ترکیب آن­ها بررسی شد. در پیش­تیمار اسیدی و بازی با استفاده از محلولهایی با غلظت­های مختلف و در مدت زمان­های متفاوت، بالاترین درصد استخراج پروتئین(در دمای 121 و مدت زمان 30 دقیقه) بهترتیب 83 و 93 درصد گزارش شد که نشان داد که استفاده از قلیا، بازدهی بالاتری در استخراج پروتئین دارد. همچنین، با استفاده از روش اتولیز و امواج فراصوت، بالاترین بازده استخراج بهترتیب 60 و 39 درصد از پروتئین کل بود. در این مطالعه، برای نخستین بار از روش اتولیز بههمراه انجماد سریع برای استخراج پروتئین از ریزجلبک استفاده شد و بر اساس نتایج به‌دستآمده، بازدهی فرایند اتولیز بهمیزان 3 تا 10 درصد افزایش یافت.

کلیدواژه‌ها


 

[1]        Mata, T. M., Martins, A. A., Caetano, N. S., "Microalgae for biodiesel production and other applications: a review", Renewable and sustainable energy reviews, 14(1), pp. 217-232, (2010).
[2]        Brennan, L., Owende, P., "Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and
co-products", Renewable and sustainable energy reviews, 14(2), pp. 557-577, (2010).
[3]        Pulz, O., Scheibenbogen, K., "Photobioreactors: Design and performance with respect to light energy input. In: Bioprocess and Algae Reactor Technology, Apoptosis”. Springer Berlin Heidelberg, pp. 123–52, (2007).
[4]        Shokrkar, H., Abbasabadi, M., Ebrahimi, S.,
"Model-based evaluation of continuous bioethanol production plant", Biofuels, Bioproducts and Biorefining, 13(1), pp. 11-20, (2019).
[5]        Shokrkar, H., Ebrahimi, S., Zamani, M., "Enzymatic hydrolysis of microalgal cellulose for bioethanol production, modeling and sensitivity analysis” Fuel, 228, pp. 245-258, (2018).
[6]        Colman, B., Rotatore, C., "Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant Cell Environ", pp. 919-934, (1995).
[7]        Cheah, W. Y., Show, P. L., Chang, J. S., Ling, T. C., Juan, J. C., "Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae", Bioresour Technol, pp. 190-201, (2015).
[8]        Tabernero, A., Martín del Valle, E. M., Galán, M. A., "Evaluating the industrial potential of biodiesel from a microalgae heterotrophic culture: Scale-up and economics", Biochem Eng J, pp. 104-115, (2012).
[9]        Chisti, Y., "Biodiesel from microalgae", Biotechnology advances, 25(3), pp. 294-306, (2007).
[10]      Carneiro, M., Pradelle, F., "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)", Renewable and Sustainable Energy Reviews, 73, pp. 324-331, (2017).
[11]      Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., "Biodiesel production from oleaginous microorganisms", Renewable energy, 34(1), pp. 1-5 ,(2009).
[12]      Gao, M. T.,Shimamura, T., Ishida, N., Takahashi, H., "Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel” Journal of bioscience and bioengineering, 114(3), pp. 330-333, (2012).
[13]      Norambuena, F., Hermon, K., Skrzypczyk, V., Emery, J. A., Sharon, Y., Beard, A., "Algae in Fish Feed: Performances and Fatty Acid Metabolism in Juvenile Atlantic Salmon", Pond DW, PLoS One,
pp. 498-506, (2015).
[14]      Muto, M., Nojima, D., Yue, L. H. K., "Potential of water surface-floating microalgae for biodiesel production: Floating-biomass and lipid productivities”, J of bioscience, pp. 124-132, (2017).
[15]      Tran, D. T., Chen, C. L., Chang, J. S., "Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using” Bioresource technology, 135, pp. 213-231, (2013).
[16]      Roy, S. S., Pal, R., Microalgae in Aquaculture: "A Review with Special References to Nutritional Value and Fish Dietetics” In Proceedings of the Zoological Society, Vol. 68, No. 1, pp. 1-8, (2015).
[17]      Manirafasha, E., Ndikubwimana, T., Zeng. X., Lu, Y., Jing, K., "Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J pp: 282-296, (2016).
 
 
 
 
[18]      Chen, C .Y., Zhao, X. Q.,Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., "Microalgae-based carbohydrates for biofuel production", Biochem Eng J., pp. 1-10, (2013).
[19]      Sambusiti, C., Bellucci, M., "Algae as promising feedstocks for fermentative biohydrogen production according to a biorefinery approach: a comprehensive review, Renewable and Sustainable Energy Reviews, 44, pp. 20-36, (2015).
[20]      Vanthoor- Koopmans, M., Wijffels, R. H., Barbosa, M. J., Eppink, M. H., "Biorefinery of microalgae for food and fuel", Bioresour Technol, pp. 142-149, (2013).
[21]      Spolaore, P., Joannis- Cassan, C., Duran, E., Isambert, A., "Commercial applications of microalgae", J Biosci Bioeng, pp. 87–96, (2006).
[22]      Solana, M., Rizza, C., "Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus”, Chlorella. The Journal of Supercritical Fluids, 92, pp. 311-318, (2014).
[23]      Mooij, P., Stouten, G., "Survival of the fattest", Energy & Environmental Science, 6(12),
pp. 3404-3406, (2013).
[24]      Ciudad, G., Rubilar, O., Azócar, L., Toro, C., Cea, M., Torres, Á., "Performance of an enzymatic extract in Botrycoccus braunii cell wall disruption", J Biosci Bioeng. pp. 75-80, (2014).
[25]      Günerken, E., D’Hondt, E., Eppink, M. H. M., Garcia- Gonzalez, L., Elst, K., Wijffels, R. H., "Cell disruption for microalgae biorefineries", Biotechnol Adv, pp. 243-260 (2015).
[26]      Safi, C., Ursu, A. V., Laroche, C., Zebib, B., Merah, O., Pontalier, P. Y., "Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods", Algal Res, 3, pp. 61-65 (2014).
[27]      Piasecka, A., Krzemiñska, I., Tys, J., "Physical methods of microalgal biomass pretreatment", International Agrophysics, 28(3). pp. 341–8, (2014).
[28]      Safi, C., Frances, C., Ursu, AV., Laroche, C., Pouzet, C.,Vaca- Garcia, C., "Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase", Algal research, 8, pp. 61-68 ,(2015).
[29]      Foley, P. M., Beach, E. S., Zimmerman, J. B., "Algae as a source of renewable chemicals: opportunities and challenges", Green Chemistry, 13(6), pp. 1399-1405. 2011).
[30]    شکرکار، هـ .، "بررسی استخراج کربوهیدراتها از ریزجلبک جهت تولید اتانول"، پایان‌نامه دکتری، دانشگاه صنعتی سهند (2017).
[31]      Postma, P., Miron, T., Olivieri, G., "Mild disintegration of the green microalgae Chlorella vulgaris using bead milling", Bioresource technology, 184, pp. 297-304, (2015).
[32]      Waterborg, J. H., "The Lowry Method for Protein Quantitation", in The protein protocols handbook, pp.7-10, Humana Press, Totowa, NJ, (2009).
[33]      Mendes- Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., Morais, R., "Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability", J Appl Phycol, 13(1), pp. 19-24, (2001).
[34]      Show, K., Lee, D., Tay, J., Lee, T., "Microalgal drying and cell disruption–recent advances", Elsevier , Bioresource technology, 184, pp. 258-266, (2015).
[35]      Guldhe, A., Singh, B., Rawat, I., Ramluckan, K., Bux, F., "Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production", Fuel,128, pp. 46-52 (2014).
[36]      Parimi, N. S., Singh, M., Kastner, J.R., Das, K. C., Forsberg, L. S., Azadi, P., "Optimization of protein extraction from Spirulina platensis to generate a potential co-product and a biofuel feedstock with reduced nitrogen content", Front Energy Res, 3,
pp. 256-263 (2015).
[37]      Araujo, G., Matos, L., "Extraction of lipids from microalgae by ultrasound application: prospection of the optimal extraction method", Ultrasonics sonochemistry, 20(1), pp. 95-98 (2013).
[38]      Kim, J., Yoo, G., Kim, K., Lee, H., Lim, J., Kim, W., "Methods of downstream processing for the production of biodiesel from microalgae", Biotechnology advances, 31(6), pp. 862–76 (2013).
[39]      Costa, G., Plazanet, I., "Plant cell wall, a challenge for its characterisation", Plant cell wall, pp. 1-6 (2016).
[40]      Boye, J. I., Barbana, C., "Protein Processing in Food and Bioproduct Manufacturing and Techniques for Analysis", Food and industrial bioproducts and bioprocessing, 10, pp. 85-113 (2015).
[41]      Gerde, J. A; Wang, T., Yao, L., Jung, S., Johnson, L. A., Lamsal, B., "Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass", Algal Res, 2(2), pp. 145-153 (2013).
[42]      Kadam, S. U., Álvarez, C., Tiwari, B. K., O’Donnell, C. P., "Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum", Food Res Int,99, pp. 1021-7 (2017).
[43] Wang, D., Li, Y., Hu, X., Su, W., Zhong, M., "Combined Enzymatic and Mechanical Cell Disruption and Lipid Extraction of Green Alga Neochloris oleoabundans", International journal of molecular sciences, 16(4), pp. 7707–22 (2015).