مقایسۀ نتایج مدل‌های شبکۀ عصبی مصنوعی با مدل‌های ریاضی مختلف برای تخمین نرخ نم در فرایند خشک‌کردن میوۀ به

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه پیام نور

2 پژوهشکده توسعه صنایع شیمیایی

چکیده

در این پژوهش، فرایند خشک‌کردن میوۀ به و تأثیر مشخصه‌های مختلفی مانند سرعت هوای خشک‌کردن، زمان، دما و ضخامت بر نسبت نم،  مطالعه و بررسی شد. 7 مدل‌ ریاضی بر داده‌های به دست آمده از 27 سری آزمایش برازش و بهترین مدل انتخاب شد. همچنین مدل‌سازی با شبکۀ عصبی مصنوعی (ANN) انجام گرفت. در این مدل‌سازی، اثر تمام مشخصه‌های ورودی در فرایند خشک‌کردن به‌طور همزمان بررسی شد. ساختار شبکۀ انتخابی از نوع پرسپترون چندلایه با الگوریتم پس انتشار خطا در نظر گرفته شد. با پژوهش روی تعداد مختلفی از نرون‌های لایۀ میانی و نیز توابع انتقال مختلف،‌ از 9 نرون و تابع انتقال لگاریتم سیگموئیدی برای لایۀ میانی و تابع انتقال پیورلین برای لایۀ خروجی استفاده شد. مدل‌سازی با شبکۀ عصبی مصنوعی،اثر همزمانچهارمشخصۀورودی را با دقت بسیار بالایی پیش‌بینی کرد. نتایج نشان داد که مدل‌سازی ANN در مقایسه با بهترین مدل‌ ریاضی دارای دقت بالاتری است.

کلیدواژه‌ها


 

[1]        Shinomiya, F., Hamauzu, Y., Kawahara, T.,
"Anti-allergic effect of a hot-water extract of quince (cydonia oblonga)", Biosci. Biotechnol. Biochem., 73, pp. 1773–1778, (2009).
[2]        Thakur, B. R., Singh, R. K., Handa, A. K., "Chemistry and uses of pectin- a review. Crit. Rev", Food Sci. Nutr., 37, pp. 47-73, (1997).
[3]        Silva, B. M., Andrade, P. B., Valentão, P., Ferreres, F., Seabra, R. M., Ferreira, M. A., "Quince (cydonia oblonga miller) fruit (pulp, peel, and seed) and jam: antioxidant activity", J. Agric. Food Chem., 52,
pp. 4705-4712, (2004).
[4]        Mohebbi, S., Naserkheil, M., Kamalinejad, M., Hosseini, S. H., Noubarani, M., Mirmohammadlu, M., Eskandari, M. R., "Antihyperglycemic activity of quince (Cydonia oblonga Mill.) fruit extract and its fractions in the rat model of diabetes", International Pharmacy Acta, 2, pp. 1-8, (2019).
[5]        Noshad, M., Mohebbi, M., Shahidi, F., Mortazavi, S. A., "Kinetic modeling of rehydration in air-dried quinces pretreated with osmotic dehydration
and ultrasonic", J. Food Process. Preserv., 36,
pp. 383–392, (2012).
[6]        Doymaz, İ., İsmail, O. "Drying characteristics of sweet cherry", Food Bioprod Process., 89, pp. 31-38, (2011).
[7]        Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., Anwar, R., "Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review", J Food Process Preserv, 43, pp. 1-15, (2019).
[8]        Jing, L., Zhenfeng, L., Ning W., Raghavan, G. S. V., Yongsheng P., Chunfang S., Guanyu, Z.,
"Novel Sensing Technologies During the Food Drying Process", Food Engineering Reviews, 12,
pp. 121–148, (2020).
[9]        Karim, M. A., Hawlader, M. N. A., "Mathematical modeling and experimental investigation of tropical fruits drying", Int. J. Heat Mass Tran., 48,
pp. 4914–4925, (2005).
[10]      Supmoon, N., Noomhorm, A., "Influence of combined hot air impingement and infrared drying on drying kinetics and physical properties of potato chips", Drying Technol., 31, pp. 24-31, (2013).
[11]      Silva, V., Figueiredo, A. R., Costa, J. J., Guiné, R. P. F., "Experimental and mathematical study of the discontinuous drying kinetics of pears", J. Food Eng., 134, pp. 30-36, (2014).
[12]      Lagunas, L. M., Ramírez, J. R., Gracida, M. C., Torres, S. S., Bernal, G. B., "Convective drying kinetics of strawberry (fragaria ananassa): effects on antioxidant activity, anthocyanins and total phenolic content", Food Chem., 230, pp. 174-181, (2017).
[13]      Durigon, A., Parisotto, E. I. B., Carciofi, B. A. M., Laurindo, J. B., "Heat transfer and drying kinetics of tomato pulp processed by cast-tape drying", Drying Technol., 35, pp.1-9, (2017).
[14]      Senadeera, W., Adiletta, G., Önal, B., Di Matteo, M., Russo, P., "Influence of Different Hot Air-Drying Temperatures on Drying Kinetics, Shrinkage, and Colour of Persimmon Slices", Foods 9, 101, (2020).
[15]      Sacilik, K., Elicin, A. K. "The thin layer drying characteristics of organic apple slices", J. Food Eng., 73, pp. 281-289, (2006).
[16]      Babalis, S. J., Belessiotis, V. G., "Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs", J. FoodEng., 65, pp. 449-458, (2004).
[17]      Kaya, A., Aydin, O., Demirtas, C., Akgun, M., "An experimental study on the drying kinetics of quince", Desalination, 212, pp. 328-343, (2007).
 
[18]      Doymaz, İ., Demir, H., Yildirim, A., "Drying of quince slices: effect of pretreatments on drying and rehydration characteristics", Chem. Eng. Commun., 202, pp. 1271–1279, (2015).
[19]      Barroca, M. J., Guine, R. P. F., "Study of drying kinetics of quince", In: Proceedings of the 3rd
Int. Conf. of Agric. Eng. (pp. 6-15), Valencia, Spain. (2012).
[20]      Tzempelikos, D. A., Mitrakos, D., Vouros, A. P., Bardakas, A. V., Filios, A. E., Margaris, D. P., "Numerical modelling of heat and mass transfer during convective drying of cylindrical quince slices", J. Food Eng., 156, pp. 10-21, (2015).
[21]      Cano, L. B., Verdugo, A. S., Gutierrez, L. M. G., Rivas, U. R., "Modeling the thin-layer drying process of granny smith apples: application in an indirect solar dryer", Appl. Therm. Eng., 108, pp. 1086-1094, (2016).
[22]      Hasan, A. A. M., Bala, B. K., Rowshon, M. K., "Thin layer drying of hybrid rice seed", Eng. Agric. Environ. Food, 7, pp. 169-175, (2014).
[23]      Ashtiani, S. H. M., Salarikia, A., Golzarian, M. R., "Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments", Inform. Process. Agric., 4,
pp. 128-139, (2017).
[24]      Koua, K. B., Fassinou, W. F., Gbaha, P., Toure, S., "Mathematical modelling of the thin layer solar drying of banana, mango and cassava", Energy, 34, pp. 1594-1602, (2009).
[25]      Avhad, M. R., Marchetti, J. M. "Mathematical modelling of the drying kinetics of hass avocado seeds", Ind. Crop. Prod., 91, pp. 76-87, (2016).
[26]      Sadeghi, E., Haghighi Asl, A., Movagharnejad, K., "Mathematical modelling of infrared-dried kiwifruit slices under natural and forced convection", Food Sci. Nutr, pp. 3589-3606, (2019).
[27]      Doymaz, I., "Thin-layer drying of spinach leaves 
in a convective dryer", J. Food Process Eng., 32,
pp. 112–125, (2009).
[28]      Ruhanian, S., Movagharnejad, K., "Mathematical modeling and experimental analysis of potato
thin-layer drying in an infrared-convective dryer", Eng. Agric. Environ. Food, 9, pp. 84-91, (2016).
[29]      Mirzaei Ghaleh, A., Rafiei, Sh., Kayhani, A., Imam Jomeh, Z., Taheri Gravand, A., "Modeling the drying of the thin layer of apricots. scientific magazine", Food Processing and Storage, Volume 1, Number 2, pp. 139-150, (1388). [In Persian].
[30]      Poonnoy, P., Tansakul, A., Chınnan, M., "Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying", J. Food Sci., 72, pp. 42–47, (2007).
[31]      Salehi, F., Kashani Nejad, M., Sadeghi Mahonak, A., Ziaifar, A. M., "The process of drying a button mushroom by the infrared system. scientific magazine", Innovative Food Technologies, 2, No. 8, pp. 39-47, (1394). [In Persian].
[32]      Çakmak, G., Yıldız, C., "The prediction of seedy grape drying rate using a neural network method", Comput. Electron. Agric., 75, pp. 132-138, (2011).
[33]      Khawas, P., Dash, K. K., Das, A. J., Deka, S. C., "Modeling and optimization of the process parameters in vacuum drying of culinary banana (Musa ABB) slices by application of artificial neural network and genetic algorithm", Drying Technol., 34, pp. 491-503, (2016).
[34]      Khaled, A. Y., Kabutey, A., Selvi, K. Ç., Mizera, Č., Hrabe, P., Herák, D., "Application of Computational Intelligence in Describing the Drying Kinetics of Persimmon Fruit (Diospyros kaki) During Vacuum and Hot Air-Drying Process", Processes., 8, p. 544, (2020).
[35]      Abbaspour-Gilandeh, Y., Jahanbakhshi, A., Kaveh, M., "Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS." Food Sci. Nutr. 8(1), pp. 594–611, (2020).
[36]      Balbay, A., Şahin, Ö., Karabatak, M., "An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using artificial neural network", Drying Technol., 29,
pp. 1685–1696, (2011).
[37]      Nadian, M. H., Rafiee, S., Aghbashlo, M., Hosseinpour, S., Mohtasebi, S. S., "Continuous
real-time monitoring and neural network modeling of apple slices color changes during hot air drying", Food Bioprod Process., 94, pp. 263-274, (2015).
[38]      Özdemir, M. B., Aktaş, M., Şevik, S., Khanlari, A., "Modeling of a convective-infrared kiwifruit
drying process", Int. J. Hydrogen Energy, 42,
pp. 18005-18013, (2017).
[39]      Ayensu, A., "Dehydration of food crops using a solar dryer with convective heat flow", Solar Energy., 59, pp. 121–126, (1997).
[40]      Akpinar, E.K., Bicer, Y., Yildiz, C., "Thin
layer drying of red pepper", J. Food Eng, 59(1),
pp. 99–104, (2003).
[41]      Yagcioglu, A., Degirmencioglu, A., Cagatay, F., "Drying characteristic of laurel leaves under different conditions", In: A. Bascetincelik (Ed.), Proceedings of the7th international congress on agricultural Mechanization and energy., Adana, Turkey: Faculty of Agriculture, Cukurova University. pp. 565–569, (1999).
[42]      Togrul, I. T., Pehlivan, D., "Modeling of thin layer drying of some fruits under open-air sun drying process", J. Food Engineering., 65, pp. 413–425, (2004).
[43]      Diamante, L. M., Munro, P. A., "Mathematical modeling of the thin layer solar drying of sweet potato slices", Solar Energy., 51, pp. 271–276, (1993).
[44]      White, G. M., Ross, I. J., Ponelert, R., "Fully exposed drying of popcorn. Transactions of ASAE 24,
pp. 466–468, (1981).
[45]      Midilli, A., Kucuk, H., Yapar, Z., "A new model for single layer drying", Drying Technology, 20(7),
pp. 1503–1513, (2003).
[46]      Coulibaly, P., Anctil, F., Bobee, B., "Daily reservoir rnflow rorecasting using artificial neural networks with stopped training approach", J. Hydrol., 230,
pp. 244-257, (2000).
[47]      Yazdani, H., Khoshhal, A., Mousavi, N. S., "Evaluating the performance of a sequencing batch reactor (SBR) for sanitary wastewater treatment Using Artificial Neural Network (ANN)", Environmental Progress & Sustainable Energy.
pp. 1-9, (2020).
[48]      Cybenko, G., "Approximation by superpositions of a sigmoidal function", Mathematics of Control, Signals and Systems, 2, pp. 303–314, (1989).
 
[49]      White, H., "Estimation, Inference and Specification Analysis", Cambridge University Press. (1994).
[50]      Bakeri, Gh., Delavar, M., Soleimani Lashkenar M., "Surface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network", J. oil gas petrochem. Technol, 2, pp. 14-26, (2015).
[51]      Mehdizadeh, B., Movagharnejad, K., "A comparison between neural network method and semi empirical equations to predict the solubility of different compounds in supercritical carbon dioxide", Fluid Phase Equilib. 303, pp. 40–44, (2011).
[52]      Islam, M. D. R., Sablani, S. S., Mujumdar, A. S., "Artificial neural network model for prediction
of drying rates", J. Drying Technol., 21(9),
pp. 1867–1884, (2003).
[53]      Movagharnejad, K., Nikzad, M., "Modeling of tomato drying using artificial neural network", J. Comput Electron Agric., 59, pp. 78-85, (2007).