الگوسازی رشد گونۀ سیانوباکتری سینکوکوس زیر رژیم‌های نوری متفاوت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه پیام نور

2 دانشگاه صنعتی امیرکبیر

چکیده

گونۀ سینکوکوس1 یکی از انواع سیانوباکتری‌ها است که در این‌پژوهش در یک زیست‌واکنشگاه نوری مجهز به سیستم نوردهی داخلی کشت داده شد. واکنشگاه به‌گونه‌ای طراحی شد تا کشت تک‌گونه‌ای در داخل آن انجام شود. هدف از این‌مطالعه، بررسی رفتار رشد این‌گونه در برابر تغییرات نوردهی است؛ بدین منظور، مقادیر مختلفی از تابش نور اولیه2 به داخل زیست‌واکنشگاه نوری تابیده و رشد سلول‌ها مطالعه شد. مشاهده شد که با افزایش تابش نور، میزان رشد سلول‌ها هم افزایش یافت، تا اینکه به حد رخداد مهارکنندگی نوری3 در تابش نور4 بیش از 1-s 2-mE m 250 رسید. به طور کلی، با افزایش تابش نور پیش از رخداد مهارکنندگی نوری، حداکثر چگالی نوری سلول‌ها (OD600)، بیشینۀ سرعت رشد و مقدار تولید زیست‌توده افزایش  و در نتیجه ضریب خاموشی5کاهش پیدا کرد. حداکثر میزان چگالی نوری برابر 91/5 در تابش نور کم‌تر از 1-s 2-mE m 250
در طول یک دورۀ رشد 80 روزه مشاهده شد. با استفاده از تابع
مونود اصلاح‌شده، نتایج آزمایشگاهی داده‌های میزان رشد در برابر تابش نور، با دقت مناسبی الگوسازی شد. مقایسۀ انجام گرفته بین نتایج میزان رشد در برابر تابش نور برای سایر ریزاندام‌های نورساخت کننده، مؤید روندهای به‌دست آمده برای گونۀ سیانوباکتری در این‌مطالعه بود و رفتارهای مشابهی در قبال رخداد مهارکنندگی نوری به‌دست داد. اطلاعات به‌دست‌آمده از قبیل تابع مونود و ضرایب آن، تغییرات ضریب خاموشی و میزان شدت رشد برای طراحی زیست‌واکنشگاه نوری به کشت حجم بالای این‌گونه کمک‌کننده است.

کلیدواژه‌ها


 [1]       Liu, J., Ma, X., "The analysis on energy and environmental impacts of microalgae-based fuel methanol in China", Energy Policy, 37(4):
pp. 1479-1488, (2009).

[2]       Wyatt Nicholas, B., Gloe Lindsey, M., Brady Patrick, V., Hewson John, C., Grillet Anne, M., Hankins Matthew, G., Pohl Phillip, I., "Critical conditions for ferric chloride-induced flocculation of freshwater algae", Biotechnology and Bioengineering, 109(2): pp. 493-501, (2012).

[3]       Rose, A., Stevens, B., "Policy Instruments for Mitigating Carbon Dioxide Emissions", in Fossil Energy, Malhotra R., Editor. Springer New York: New York, NY. pp. 519-537, (2020).

[4]       Li, Lanjuan, "Synthesis and Characterization of Starch-based Cationic Flocculants for Harvesting Microalgae", MSc Thesis, University of Minnesota, (2012).

[5]       Santilli, M., Moutinho, P., Schwartzman, S., Nepstad, D., Curran, L., Nobre, C., "Tropical Deforestation and the Kyoto Protocol", Climatic Change, 71(3):

pp. 267-276,(2005).

[6]       Peters, G. P., Andrew, R. M., Canadell, J. G., Friedlingstein, P., Jackson, R. B., Korsbakken, J. I., Le Quéré, C., Peregon, A., "Carbon dioxide emissions continue to grow amidst slowly emerging climate policies", Nature Climate Change, 10(1):

pp. 3-6, (2020).

[7]        Hill, J., Nelson, E., Tilman, D., Polasky, S., Tiffany, D., "Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels", Proceedings of the National Academy of Sciences, 103(30): pp. 11206, (2006).

[8]        Ali, M., Akbar, N., "Biofuel is a renewable environment friendly alternate energy source for the future", Modeling Earth Systems and Environment, 6(1): pp. 557-565, (2020).

[9]        Karatay, S. E., Dönmez, G., "Microbial oil production from thermophile cyanobacteria for biodiesel production", Applied Energy, 88(11): pp. 3632-3635, (2011).

[10]      Cheng, J. J., Timilsina, G. R., "Status and barriers of advanced biofuel technologies: A review", Renewable Energy, 36(12): pp. 3541-3549, (2011).

[11]      Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P., "Land Clearing and the Biofuel Carbon Debt", Science, 319(5867): p. 1235, (2008).

[12]      Tan, P., Hu, Z., Lou, D., Li, Z., "Exhaust emissions from a light-duty diesel engine with Jatropha biodiesel fuel", Energy, 39(1): pp. 356-362, (2012).

[13]      Mathews, J. A., "Carbon-negative biofuels", Energy Policy, 36(3): pp. 940-945, (2008).

[14]      Hosseinzadeh-Bandbafha, H., Tabatabaei, M., Aghbashlo, M., Khanali, M., Khalife, E., Roodbar, T., Mohammadi P., "Consolidating emission indices of a diesel engine powered by carbon nanoparticle-doped diesel/biodiesel emulsion fuels using life cycle assessment framework", Fuel, 267: p. 117296, (2020).

[15]      Amos, R., "Handbook of microalgal culture: biotechnology and applied phycology", Oxford, UK; Amesterdam, Iowa, USA: Blackwell Science, (2004).

[16]      Mata, T. M., Martins, A. A., Caetano, N. S., "Microalgae for biodiesel production and other applications: A review", Renewable and Sustainable Energy Reviews, 14(1): pp. 217-232, (2010).

[17]      Geider, R. J., "Light and Temperature Dependence of the Carbon to Chlorophyll a Ratio in Microalgae and Cyanobacteria: Implications for Physiology and Growth of Phytoplankton", The New Phytologist, 106(1): pp. 1-34, (1987).

[18]      Metting, F. B., "Biodiversity and application of microalgae", Journal of Industrial Microbiology, 17(5): pp. 477-489, (1996).

[19]      Javadi, N., Zokaee, Ashtiani, F., Fouladitajar, A., Moosavi Zenooz, A., "Experimental studies and statistical analysis of membrane fouling behavior and performance in microfiltration of microalgae by a gas sparging assisted process", Bioresoure Technology, 162: pp. 350-357, (2014).

[20]      Branco-Vieira, M., Costa, D., Mata, T. M., Martins, A. A., Freitas, M. A. V., Caetano, N. S., "A life cycle inventory of microalgae-based biofuels production in an industrial plant concept", Energy Reports, 6:

pp. 397-402, (2020).

[21]      Dresselhaus, M. S., Thomas, I. L., "Alternative energy technologies", Nature, 414(6861):

pp. 332-337, (2001).

[22]      Boussiba,  S., Richmond, A. E., "C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis", Archives of Microbiology, 125(1):

pp. 143-147,(1980).

[23]      Ferreira, A., Ribeiro, L., Batista, A., Marques, P., Nobre, B., Palavra, A., da Silva, P., Gouveia, L., Silva, C., "A biorefinery from Nannochloropsis sp. microalga – Energy and CO2 emission and economic analyses", Bioresource Technology, 138:

pp. 235-244, (2013).

[24]      Heidorn, T., Camsund, D., Huang, H., Lindberg, P., Oliveira P., Stensjö, K., Lindblad, P., "Chapter Twenty-Four - Synthetic Biology in Cyanobacteria: Engineering and Analyzing Novel Functions, in Methods in Enzymology", C. Voigt, Editor, Academic Press. pp. 539-579, (2011).

[25]      Golden, S. S., Brusslan, J., Haselkorn, R., "Genetic engineering of the cyanobacterial chromosome", in "Methods in Enzymology", Academic Press.

pp. 215-231, (1987).

[26]      Kovacevic, V., Wesseler, J., "Cost-effectiveness analysis of algae energy production in the EU", Energy Policy, 38(10): pp. 5749-5757, (2010).

[27]      Hansel, P. A., Riefler, R., Stuart, B. J., "Efficient flocculation of microalgae for biomass production using cationic starch", Algal Research, 5:

pp. 133-139, (2014).

[28]      Liu, S., Qiu, B., "Different responses of photosynthesis and flow cytometric signals to iron limitation and nitrogen source in coastal and oceanic Synechococcus strains (Cyanophyceae)", Marine Biology, 159(3): pp. 519-532, (2012).

[29]      Delavari Amrei, H., Nasernejad, B., Ranjbar, R., Rastegar, S., "Spectral shifting of UV-A wavelengths to blue light for enhancing growth rate of cyanobacteria", Journal of Applied Phycology, 26(3): pp. 1493-1500, (2014).

[30]      Phlips, E. J., Zeman, C., Hansen, P., "Growth, photosynthesis, nitrogen fixation and carbohydrate production by a unicellular cyanobacterium, Synechococcus sp. (Cyanophyta)", Journal of Applied Phycology, 1(2): pp. 137-145, (1989).

[31]      Lee, D. H., "Algal biodiesel economy and competition among bio-fuels", Bioresource technology, 102(1): pp. 43-49, (2011).

[32]      Cai, T., Park, S., Racharaks, R., Li, Y., "Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production", Applied Energy, 108: pp. 486-492, (2013).

[33]      Silva, C. S. P., Silva-Stenico, M. E., Fiore, M. F., de Castro, H. F., Molgero Da Rós, P. C.,  "Optimization of the cultivation conditions for Synechococcus sp. PCC7942 (cyanobacterium) to be used as feedstock for biodiesel production", Algal Research, 3: pp. 1-7, (2014).

[34]      Peng, Z. Miao, X., "Monoglucosyldiacylglycerol participates in phosphate stress adaptation in Synechococcus sp. PCC 7942", Biochemical and Biophysical Research Communications, 522(3):

pp. 662-668, (2020).

[35]      Hillman, K. M., Sims, R. C., "Struvite formation associated with the microalgae biofilm matrix of a rotating algal biofilm reactor (RABR) during nutrient removal from municipal wastewater", Water Science and Technology, (2020).

[36]      Molina Grima, E., Fernández, F. G., Garcı́a Camacho, F., Chisti, Y., "Photobioreactors: light regime, mass transfer, and scaleup", Journal of Biotechnology, 70(1): pp. 231-247, (1999).

[37]      Molina Grima, E., Fernández, F. G., Garcı́a Camacho, F., Chisti, Y., "Tubular photobioreactor design for algal cultures", Journal of Biotechnology, 92(2):

pp. 113-131, (2001).

[38]      Kurano, N., Miyachi, S., "Selection of microalgal growth model for describing specific growth

rate-light response using extended information criterion", Journal of Bioscience and Bioengineering, 100(4): pp. 403-408, (2005).

[39]      Mazzelli, A., Cicci, A., Di Caprio, F., Altimari, P., Toro, L., Iaquaniello, G., Pagnanelli, F., "Multivariate modeling for microalgae growth in outdoor photobioreactors", Algal Research, 45: p. 101663, (2020).

[40]      Zhou, W., Lu, Q., Han, P., Li, J., "Chapter

3-Microalgae Cultivation and Photobioreactor Design in Microalgae Cultivation for Biofuels Production", A. Yousuf, Editor. Academic Press.

pp. 31-50, (2020).

[41]      Kazbar, A., Marec, H., Takache, H., Ismail, A., Pruvost, J., "Effect of design dark fraction on the loss of biomass productivities in photobioreactors", Bioprocess and Biosystems Engineering, 43(2):

pp. 207-216, (2020).

[42]      Imamoglu, E., Dalay, M. C., Sukan, F. V., "Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis", New Biotechnology, 26(3): pp. 199-204, (2009).

 

[43]      Moosavi Zenooz, A., Zokaee Ashtiani, F., Ranjbar, R., Javadi, N., "Synechococcus sp. (PTCC 6021) cultivation under different light irradiances Modeling of growth rate-light response", Preparative Biochemistry & Biotechnology, 46(6): pp. 567-574, (2016).

[44]      Moosavi Zenooz, A., Zokaee Ashtiani, F., Ranjbar, R., Nikbakht, F., "Comparison of different artificial neural network architectures in modeling of Chlorella sp. flocculation", Preparative Biochemistry & Biotechnology, 47(6): pp. 570-577, (2017).

[45]      Cho, S., Ji, S. C., Hur, S. B., Bae, J., Park, I. S., Song Young, Ch., "Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata", Fisheries Science, 73(5): pp. 1050-1056, (2007).

[46]      Jian-Ming, L., Li-Hua, Ch., Xin-Hua, X., Lin, Zh., Huan-Lin, Ch.,"Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions", Bioresource Technology, 101(17):

pp. 6797-6804, (2010).

[47]      Chisti, Y., "Biodiesel from microalgae beats bioethanol", Trends in Biotechnology, 26(3):

pp. 126-131, (2008).

[48]      Molina Grima, E., García Camacho, F., Fernández Sevilla, J. M., Acién Fernández, F. G., Pérez J. A. Sánchez, Sevilla J. M. Fernández, Fernández F. G. Contreras Gómez, A., "A mathematical model of microalgal growth in light-limited chemostat culture", Journal of Chemical Technology & Biotechnology, 1994. 61(2) pp. 167-173, (2008).

[49]      Litchman, E., "Growth rates of phytoplankton under fluctuating light", Freshwater Biology, 44(2):

pp. 223-235, (2000).