مدل‌های تشکیل رسوب‌ نمکی در مبدل‌های حرارتی و روش‌های رسوب‌زدایی آن

نوع مقاله: مقاله مروری

نویسندگان

دانشگاه تبریز

چکیده

در این‌تحقیق، به بررسی مشکلات رسوب محلول­های نمک، مدل­های بررسی تشکیل رسوب و روش­های رسوب­زدایی این ترکیبات از مبدل­ها پرداخته شد. محلول‌های نمک، به‌طور گسترده‌ای در بسیاری از فن آوری­های صنعتی استفاده می‌شود، لذا محدودیت اصلی معرفی بسیاری از فن­آوری­های بخار- مایع دما بالا1، برای استفاده در محلول­های نمکی، مشکلات ناشی از رسوب آن­ها در مبدل­های حرارتی است. روش­های رسوب­زدایی این سیال­ها شامل رسوب­زدایی برون‌خط و برخط می­باشد که در این بین، هریک دارای معایب و مزایای مخصوص به‌خود است. در عمل، بسته به شرایط مختلف، ضوابط متعددی تعیین‌کنندۀ مزایا و معایب هر یک از روش‌ها است. هم‌چنین کاهش رسوب بر اساس طراحی سیستم مبدل حرارتی، برای این این سیال­ها نیز می­تواند مشکلات ناشی از رسوب را تا حدی برطرف نماید. از روش­های نوین در رسوب­زدایی می­توان به شوک حرارتی، استفاده از پرتابه­ها، جت آب و رسوب­زدایی هیدرومکانیکی اشاره کرد.

کلیدواژه‌ها


[1]      Bott, T. R., "Fouling of Heat Exchangers", Elsvier Science Publications, 546 p, (1995),
[2]      McCoy, J. W., "The chemical treatment of cooling water", Chemical Publishing Company, 312 p, (1983).
[3]      Ramesh, K., Sekulic, D. P., "Fundamental of Heat Exchanger Design", John Wiley and Sons Inc, 570 p, (1995).
[4]      Cowan, J. C., Weintritt, D. J., "Water-Formed Scale Deposits", Gulf Publications, 596 p, (2013).
[5]      Misyura, S. Y., Morozov,V. S., Volkov, R. S., Vysokomornaya, O. V., "Temperature and velocity fields inside a hanging droplet of a salt solution at its streamlining by a high-temperature air flow", Int J Heat Mass Transf, 129: 367–379, (2019).
[6]      Shahidzadeh, N., Desarnaud, J., "Damage in porous media: role of the kinetics of salt (re)crystallization", Eur Phys J Appl Phys, 60: 242- 245, (2012).
[7]      Schmid, J., Zarikos, I., Terzis, A., Roth, N., Weigand, B., "Crystallization of urea from an evaporative aqueous solution sessile droplet at sub-boiling temperatures and surfaces with different wettability", Exp Therm Fluid Sci, 91: 80–88, (2018).
 
 
 
[8]      Kuznetsov, G. V., Piskunov, M. V., Volkov, R. S., Strizhak, P. A., "Unsteady temperature fields of evaporating water droplets exposed to conductive, convective and radiative heating", Appl Therm Eng, 131: 340–355, (2018).
[9]      Awad, M. M., "Fouling of heat transfer surfaces", In: Heat transfer- theoretical analysis,experimental investigations and industrial systems, Ed:  Belmiloudi, A, pp: 505-542, (2011).
[10]    Muller-Steinhagen, H., Malayeri, M. R., Watkinson, A. P., "Heat transfer fouling:mitigation and cleaning strategies", Heat Transfer Eng, 26(1):1–4, (2006).
[11]    Wang, Y., "Composite fouling of calcium sulfate and calcium carbonate in a dynamic seawater reverse osmosis unit", thesis of Chemical Engineering and Industrial Chemistry of University of New South Wales ,Sydney, Australia, (2005).
[12]    Hasson, D., Zahavi, J., "Mechanism of calcium sulphate scale deposition on heat transfer surfaces", Ind Eng Chem Fundamen, 9 (1): 1–10, (1970).
[13]    Middis, J., Paul, S. T., Müller-Steinhagen, H., M, Duffy, G. G., "Reduction of heat transfer fouling by the addition of wood pulp fibers", Heat Transfer Eng, 19(2): 36-44, (2007).
[14]    Karabelas, A. J., Yiantsios, S. G., Thonon, B., Grillot, J. M., "Liquid-side fouling of heat exchangers, An integrated R and D approach for conventional and novel designs", Appl, Therm, Eng, 17(8-10): 727-737, (2007).
[15]    Mwaba, M. G., Rindt, C. C., Van-Steenhoven, A. A., Vorstman, M. A. G., "A semi-empirical correlation for crystallization fouling on heat exchange surfaces", Appl, Therm, Eng, 26: 440-447, (2006).
[16]    Kern, D. Q., Seaton, R. A., "A theoretical analysis of thermal surface fouling", Br, Chem, Eng, 4(5): 258–262, (1959).
[17]    Somerscales, E. F. C., "Fundamentals of corrosion fouling", Exp Therm and Fluid Sci, 14(4): 335-355, (1997).
[18]    Muller-Steinhagen, H., Malayeri, M. R., Watkinson, A. P., "Heat exchanger fouling: mitigation and cleaning strategies", Heat Transfer Eng, 32(3–4):189–196, (2011).
[19]    Pogiatzis, T. A., Ishiyama, E. M., Paterson, W. R., Vassiliadis, V. S., Wilson, D. I., "Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing", Appl Energy, 9: 60–66, (2012).
[20]    Fernandez, S., Pedro, J., Pinar, G., Vicente Quiles, A., GinesnViedma, P. A., "Performance evaluation of a zero-fouling reciprocating scraped-surface heat exchanger", Heat Transfer Eng, 32(3): 331-338, (2011).
[21]    Esawy, M., Malayeri, M. R., Muller-Steinhagen, H., "Crystallization fouling of finned tubes during pool boiling: effect of fin density", J Heat and Mass Transfer, 46: 1167–1176, (2010).
[22]    Klaren, D. G., de Boer, E. F., "Achievements and potential of self- cleaning heat exchangers using untreated natural seawater as a coolant", Proceedings of the ECI Conference on Heat Exchanger Fouling and Cleaning–VII, eds, H, M¨uller-Steinhagen, M, R, Malayeri, and A, P, Watkinson, ECI Symposium Series, vol, RP5, Tomar, Portugal, 262–274, (2007).
[23]    Garrett-Price, B. A., "Fouling of heat exchangers:characteristics, costs, prevention, control and removal", Noyes Publications, Park Ridge, New Jersey, (1985).
[24]    Muller-Steinhagen, H., Malayeri, M. R., Watkinson, A. P., "Recent advances in heat exchanger fouling research, mitigation, and cleaning techniques", Heat Transfer Eng, 28(3): 173-176, (2007).
[25]    Wiehe, I. A., "The oil compatibility model and crude oil compatibility", Energ Fuel, 14: 56–59, (2000).
[26]    Evangelidou, M., "Crystallization fouling of structured tubes during pool boiling heat transfer", Diploma thesis, University of Stuttgart, Stuttgart, Germany, (2010).
[27]    Waite, T. D., Fagan, J. R., "Summary of biofouling control alternatives", in Condenser Biofouling Control, ed, J, Garey, AnnArbor Science, AnnArbor, MI, (1980).
[28]    Ferreira, C. M., Simoes, M. C., Pereira, M. S., Bastos, O. C., Nunes, M., Coelho, L. F. M., "Control of biofouling of industrial surfaces using microparticles carrying a biocide", Proceedings of EUROTHERM International Conference on Heat Exchanger Fouling and Cleaning VIII– 2009, eds, H, M¨uller-Steinhagen, M, R, Malayeri, and A, P, Watkinson, Schladming, Austria, June 14–19, 378–383, (2009).
[29]    Hamed, O. A., Mardouf, K. B., Al-Omran, A., "Impact of interruption of antiscalant dosing or cleaning balls circulation during MSF plant operation", Desalination, 208: 192–203, (2007).
[30]    Al-Bakeri, F., El Hares, H., "Optimization of sponge ball cleaning system operation and design in MSF plants", Desalination, 92: 353–375, (2013).
[31]    Malayeri, M. R., Jalalirad, M. R., "Abatement of deposit formation in aqueous systems using various projectiles", Desalin Water Treat, 55(11): 2931-2938, (2014).
[32]    Malayeri, M. R., Jalalirad, M. R., "Mitigation of crystallization fouling in a single heated tube using projectiles of different sizes and hardness", Heat Transfer Eng, 35 (16-17): 1418-1426, (2014).
[33]    Jalalirad, M. R., Malayeri, M. R., "A criterion for the selection of projectiles for cleaning tubular heat exchangers", in: M,R, Malayeri, H, Muller- Steinhagen, A,P, atkinson (Eds,), Proceedings of the International Conference on Heat Exchanger Fouling and Cleaning, 332–338, (2013).
[34]    Jalalirad, M. R., Malayeri, M. R., "Preimesser, on-line cleaning of tubular heat exchangers in water service systems using projectiles", Desalin Water Treat, 51: 780–785, (2013).
[35]    Abd-Elhady, M. S., Jalalirad, M. R., Malayeri, M. R., "Optimum rate of injection of spherical projectiles in tubular heat exchangers", in: M,R, Malayeri, H, Müller-Steinhagen, A,P, Watkinson (Eds,), Proceedings of the Eurotherm International Conference on Heat Exchanger Fouling and Cleaning, Budapest, Hungary,339–345, June 9–14, (2013).