جذب یون سرب (2+) از نمونه آبی به وسیله نانوکامپوزیت پلی اتر سولفون/ نانولوله‌های کربنی آمین‌دار

نوع مقاله: مقاله مروری

نویسندگان

1 دانشگاه تهران

2 پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

جذب سطحی یون فلز سرب (2+) از نمونه­های آبی به وسیله نانوکامپوزیت پلی اتر سولفون (PES)/نانولوله‌های کربنی (CNT) آمین‌دار‌شده با متغیرهای pH، سرعت همزن، زمان تماس، مقدار جاذب و غلظت اولیه یون فلزی بررسی شد. نتایج FTIR و EDX برای نمونه اصلاح‌شده نشان داد که گروه‌های آمینی نوع اول (N-H2) و نوع دوم (N-H) روی سطح CNT قرار گرفتند. همچنین عکس‌های SEM گویای تغییر ساختار CNT، شکسته شدن آن‌ها و به دنبال آن ایجاد نظم بیشتر بود. سرعت جذب یون به وسیله نمونه نانوکامپوزیت نشان داد که تعادل سینتیکی جذب در 10 دقیقه اول تماس رخ داده است. برای حذف بیشینه یون فلزی، مقادیر نانوجاذب برابر g 1/0 به ازای mL 100 نمونه آبی، pH محیط خنثی و غلظت اولیه یون ppm95 تعیین شد. همچنین مدل ایزوترم فرندلیچ و مدل سینتیکی شبه­ درجه‌دوم، بهترین همپوشانی را باداده­های آزمایشگاهی داشت.

کلیدواژه‌ها


Fan, C., Li, K., Li, J., Ying, D., Wang, Y., Jia, J., "Comparative and competitive adsorption of Pb (II) and Cu (II) using tetraethylenepentamine modified chitosan/CoFe2O4 particles", Journal of Hazardous Materials, 326; 211-220, (2017).

[2]        Igberase, E., Osifo, P., Ofomaja, A., "Chromium (VI) ion adsorption by grafted crosslinked chitosan beads in aqueous solution: A mathematical and statistical modeling study", Environmental Technology, 38; 24: 3156-3166, (2017).

[3]        Reddy, D. H. K., Lee, S. M., "Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions", Advances in Colloid and Interface Science, 201; 68- 93, (2013).

[4]        Nithya, R., Gomathi, T., Sudha, P. N., Venkatesan, J., Anil, S., Kim, S. K., "Removal of Cr (VI) from aqueous solution using chitosan-g-poly (butyl acrylate)/silica gel nanocomposite", International Journal of Biological Macromolecules, 87; 545-554, (2016).

[5]        Rahimi, S., Moattari, R. M., Rajabi, L., Derakhshan, A. A., "Optimization of lead removal from aqueous solution using goethite/chitosan nanocomposite by response surface methodology", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 484; 216-225, (2015).

[6]        Kashitarash, Z. E., Samadi, M. T., Naddafi, K., Afkhami, A., Rahmani, A., "Application of iron nanaoparticles in landfill leachate treatment-case study: Hamadan landfill leachate. Iranian Journal of Environmental Health Science & Engineering, 9; 36, (2012).

[7]        Al-Hakami S. M., Khalil A. B., Laoui, T., Atieh, M. A., "Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation", Bioinorganic Chemistry and Applications, 2013; 458943, (2012).

[8]        Moniruzzaman, M., Winey, K. I., "Polymer nonocomposites containing carbon nanotubes", Macromolecules, 39; 16: 5194-5205, (2006).

[9]        Spitalsky, Z., Tasis, D., Papagelis, K., Galiotis, C., "Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties", Progress in Polymer Science, 35; 3: 357-401, (2010).

[10]      Gogotsi, Y., "Nanotubes and Nanofibers", CRC Press, New York, (2006).

[11]      Rosca, I. D., Watari, F., Uo, M., Akasaka, T., "Oxidation of multiwalled carbon nanotubes by nitric acid", Carbon, 43; 15: 3124-3131, (2005).

[12]      Vast, L., Mekhalif, Z., Fonseca, A., Nagy, J. B., Delhalle, J., "Preparation and electrical characterization of a silicone elastomer composite charged with multi-wall carbon nanotubes functionalized with 7-octenyltrichlorosilane", Composite Science and Technology, 67; 5: 880-889, (2007).

[13]      Chen, C., Ogino, A., Wang, X., Nagatsu, M., "Oxygen functionalization of multiwall carbon nanotubes by Ar/H2O plasma treatment", Diamond and Related Materials, 20; 2:153-156, (2011).

[14]      Vuković, G. D., Marinković, A. D., Škapin, S. D., Ristić, M. Đ., Aleksić, R., Perić-Grujić, A. A., Uskoković, P. S., "Removal of lead from water by amino modified multi-walled carbon nanotubes". Chemical Engineering Journal, 173; 3: 855-865, (2011).

[15]      Hirsch, A., Vostrowsky, O., "Functionalization of Carbon Nanotubes. In: Functional Molecular Nanostructures", Springer, Heidelberg, (2005).

[16]      Wei, G., Qi, J., Lin, P., Pan, S., Sun, X., Shen, J., Li, J., "Polyethersulfone enwrapped hydrous zirconium oxide nanoparticles for efficient removal of Pb (II) from aqueous solution", Chemical Engineering Journal, 349; 500-508, (2018).

[17]      Lee, S. H., Choi, H., Kim, K. W., "Removal of As (V) and Sb (V) in aqueous solution by Mg/Al-layered double hydroxide-incorporated polyethersulfone polymer beads (PES-LDH) ", Environmental Geochemistry and Health, 40; 5: 2119-2129, (2018).

[18]      Zhang, K., Lim, J. Y., Choi, H. J., "Amino functionalization and characteristics of multi-walled carbon nanotube/poly (methyl methacrylate) nanocomposite", Diamond and Related Materials, 18; 2: 316-318, (2009). 

[19]      Kuan, H., Ma, C. M., Chang, W., Yuen, S., Wu, H., Lee, T., "Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite", Composites Science and Technology, 65; 1703-1710, (2005).

[20]      Shen, J., Huang, W., Wu, L., Hu, Y., Ye, M., "Study on amino-functionalized multiwalled carbon nanotubes", Materials Science and Engineering: A, 464; 151-156, (2007).

[21]      Holzinger, M., Abraham, J., Whelan, P., Graupner, R., Ley, L., Hennrich, F., Kappes, M., Hirsch, A., "Functionalization of single-walled carbon nanotubes with (R-) oxycarbonyl nitrenes". Journal of the American Chemical Society, 125; 28: 8566-8580, (2003).

[22]      Dutta, D., Dubey, R., Yadav, J., Shami, T. C., Rao, K. U. B., "Preparation of spongy microspheres consist of functionalized multiwalled carbon nanotubes", New Carbon Materials, 26; 2: 98-102, (2011).

[23]      Zaghbani, N., Hafiane, A., Dhahbi, M., "Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration", Separation and Purification Technology, 55; 117-124, (2007).

[24]      Saeed, A., Sharif, M., Iqbal, M., "Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption", Journal of Hazardous Materials, 179; 564-572, (2010).

[25]      Katal, R., Hasani, E., Farnam, M., Baei, M. S., Ghayyam, M. A., "Charcoal ash as nanoadsorbent for Ni(II) adsorption and its application for wastewater treatment", Journal of Chemical & Engineering Data, 57; 2: 374-383, (2012).

[26]      Cui, Y., Meng, M., Sun, D., Liu, Y., Pan, J., Dai, X., Yan, Y., "Facile synthesis of imprinted submicroparticles blend polyvinylidene fluoride membranes at ambient temperature for selective adsorption of methyl p-hydroxybenzoate", Korean Journal of Chemical Engineering, 34; 3: 600-608, (2017).

[27]      Hubbe, M. A., Azizian, S., Douven, S., "Implications of apparent pseudo-second-order adsorption kinetics onto cellulosic materials: A review", Bioresources, 14; 3: 7582-7626, (2019).

 

[28]      Gómez, V., Larrechi, M. S., Callao, M. P., "Kinetic and adsorption study of acid dye removal using activated carbon", Chemosphere, 69; 1151-1158, (2007).

[29]      Butt, H. J., Graf, K., Kappl, M., "Physics and Chemistry of Interfaces", Wiley-VCH Verlag, Weinheim, (2003).

[30]      Bulgariu, L., Răţoi, M., Bulgariu, D., Macoveanu, M., "Equilibrium study of Pb(II) and Hg(II) sorption from aqueous solution by moss peat", Environmental and Engineering Management Journal, 7; 511-516, (2008).

[31]      Asasian, N., Kaghazchi, T., "Comparison of dimethyl disulfide and carbon disulfide in sulfurization of activated carbons for producing mercury adsorbents", Industrial and Engineering Chemistry Research, 51; 12046-12057, (2012).