Experimental Optimization of Operating Condition to Decline the Concentration Polarization on the Surface of Reverse Osmosis Membrane

Document Type : Original Article

Authors

1 Ph. D. in Chemical Engineering, Membrane Science and Technology Research Center, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

2 M. Sc. in Chemical Engineering, Third Refinery of South Pars Gas Complex, Asaluyeh, Iran

3 Assistant Professor of Chemical Engineering, Membrane Science and Technology Research Center, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran

Abstract

This research addressed the experimental optimization of the operating conditions to decrement the concentration polarization on the reverse osmosis (RO) membrane. Regarding the number and diversity of the effective parameters (salt concentration, pressure, flow rate, and pH) of desalination process, Taguchi design of experiment (DoE) was employed to decrease the number of texts and costs. The contribution of various parameters and optimal conditions to achieve the highest desalination were determined using Taguchi DoE and ANOVA as implemented in Minitab 16 software. The RO desalination increased in various conditions by prolonging the time for tests 5, 4, and 6. The best desalination performance of the polyamide composite membrane (97.24%) was achieved for salt concentration, pressure, flow rate , and pH of 1500 ppm, 10 bar, 0.5 L/min, and 7, respectively. The highest water flux through the polyamide composite membrane during the RO process was 41.04 L/m2hr which was observed in test 6. Such an enhancement in the water flux can be assigned to the decrease in the concentration polarization on the polyamide composite membrane.

Keywords

Main Subjects


[1]        Dévora-Isiordia, G. E., Cásares-De la Torre, C. A., Morales-Mendívil, D. P., Montoya-Pizeno, R., Velázquez-Limón, N., Aguilar-Jiménez, J. A., & Ríos-Arriola, J. (2022). Evaluation of concentration polarization due to the effect of feed water temperature change on reverse osmosis membranes. Membranes, 13(1), 3.
[2]        Vorosmarty, C. J., Green, P., Salisbury, J., & Lammers, R. B. (2000). Global water resources: vulnerability from climate change and population growth. science, 289(5477), 284-288.
[3]        Wei, W., Zou, X., Ji, X., Zhou, R., Zhao, K., & Wang, Y. (2021). Analysis of Concentration Polarisation in Full-Size Spiral Wound Reverse Osmosis Membranes Using Computational Fluid Dynamics. Membranes, 11(5), 353.
[4]        Shang, C., Pranantyo, D., & Zhang, S. (2020). Understanding the roughness–fouling relationship in reverse osmosis: mechanism and implications. Environmental science & technology, 54(8), 5288-5296.
[5]        Gu, B., Adjiman, C. S., & Xu, X. Y. (2017). The effect of feed spacer geometry on membrane performance and concentration polarisation based on 3D CFD simulations. Journal of Membrane Science, 527, 78-91.
[6]        Salehi, K., Esfandiari, N., Shekoohi, K., & Haghighi, A. H. (2022). An Overview of Energy Recovery Devices in Seawater Desalination by Reverse Osmosis Method. Iranian Chemical Engineering Journal, 21(123), 74-84. [In Persian]
[7]        Toh, K. Y., Liang, Y. Y., Lau, W. J., & Weihs, G. F. (2020). 3D CFD study on hydrodynamics and mass transfer phenomena for SWM feed spacer with different floating characteristics. Chemical Engineering Research and Design, 159, 36-46.
[8]        Haidari, A. H., Heijman, S. G. J., & Van Der Meer, W. G. J. (2018). Optimal design of spacers in reverse osmosis. Separation and purification technology, 192, 441-456.
[9]        Medina, J., Antonio, J., (2000). Desalinizacion de aguas salobres y de mar en ósmosis inversa, Mundi Prensa, Madrid, España.
[10]      Robles-Lizárraga, A., Martínez-Macías, M. D. R., Encinas-Guzmán, M. I., Larraguibel-Aganza, O. D. J., Rodríguez-López, J., & Dévora-Isiordia, G. E. (2020). Design of reverse osmosis desalination plant in Puerto Peñasco, Sonora, México. Desalination Water Treat, 175, 1-10.
[11]      Najid, N., Kouzbour, S., Gourich, B., Necibi, M. C., & Elmidaoui, A. (2024). Comparison of Different Membrane Technologies for Boron Removal from Seawater. In Membrane Technologies for Heavy Metal Removal from Water (pp. 143-176). CRC Press.
[12]      Voutchkov, N. (2013). Desalination engineering: planning and design.
[13]      Solís-Carvajal, C. A., Vélez Pasos, C. A., & Ramírez-Navas, J. S. (2022). Membrane technology: Ultrafiltration. Entre Ciencia e Ingeniería,11(22), 26-36.
[14]      Hoang, M. T., Pham, T. D., Verheyen, D., Nguyen, M. K., Pham, T. T., Zhu, J., & Van der Bruggen, B. (2020). Fabrication of thin film nanocomposite nanofiltration membrane incorporated with cellulose nanocrystals for removal of Cu (II) and Pb (II). Chemical Engineering Science, 228, 115998.
[15]      Sun, J., Qian, X., Wang, Z., Zeng, F., Bai, H., & Li, N. (2020). Tailoring the microstructure of poly (vinyl alcohol)-intercalated graphene oxide membranes for enhanced desalination performance of high-salinity water by pervaporation. Journal of Membrane Science, 599, 117838.
[16]      Baghdadi, Y. N., Alnouri, S. Y., Matsuura, T., & Tarboush, B. J. A. (2018). Temperature Effects on Concentration Polarization Thickness in Thin‐Film Composite Reverse Osmosis Membranes. Chemical Engineering & Technology, 41(10), 1905-1912.
[17]      Ehsani, A., SoleimaniMehr, A., Hajian Nejad, D., Bataqwa, H., & Zanganeh, M. (2019). Investigation of the effect of operating parameters on the performance of industrial reverse osmosis membranes relying on the removal of carbonate and bicarbonate. Iranian Chemical Engineering Journal,17, 47-59,[In Persia].
[18]      Li, T., Tu, Q., & Li, S. (2019). Molecular dynamics modeling of nano-porous centrifuge for reverse osmosis desalination. Desalination, 451, 182-191.
[19]      Ríos-Arriola, J., Velázquez, N., Aguilar-Jiménez, J. A., Dévora-Isiordia, G. E., Cásares-de la Torre, C. A., Corona-Sánchez, J. A., & Islas, S. (2022). State of the Art of Desalination in Mexico. Energies, 15(22), 8434.
[20]      Rahimpour, A., Jahanshahi, M., Mollahosseini, A., & Rajaeian, B. (2012). Structural and performance properties of UV-assisted TiO2 deposited
nano-composite PVDF/SPES membranes. Desalination, 285, 31-38.