Simulation of a Methanol Steam Reforming Microreactor and Proposing a Method for Reactor Compacting

Document Type : Original Article

Authors

1 Ph. D. Student of Chemical Engineering, University of Tehran

2 Professor of Chemical Engineering, University of Tehran

3 Associate Professor of Chemical Engineering, Research Institute of Petroleum Industry

4 Ph. D. of Chemical Engineering, Research Institute of Petroleum Industry

Abstract

The methanol steam reforming in a microreactor is simulated using Purnama’s reactions kinetic model. The simulation results were validated against published experimental data in terms of methanol conversion and product composition. A new concept for making the microreactor package more compact is evaluated by simulation. This idea consists of thermal and mass integration of the process, i.e., the required heat of methanol vaporization and methanol steam reforming be supplied by the heat of catalytic heat of combustion of a portion of methanol in an adjacent micro reactor to the reforming section of the package.
The simulation results showed that by using this method, it is possible to obtain a product with a hydrogen purity of more than 60% and CO content of less than 2%. The effects of reactor
temperature and residence time on the performance of the presented package was investigated and it was shown that the methanol conversion increases with increasing each of these parameters. Also, it was shown that adding small amount of water to the methanol feed stock leads to significant reduction in CO content of the product.

Keywords

Main Subjects


[1]        Garcia, G., Arriola, E., Chen, W. H., & De Luna, M. D. (2021). A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy, 217, 119384.
[2]        Sarafraz, M. M., Safaei, M. R., Goodarzi, M., & Arjomandi, M. (2019). Reforming of methanol with steam in a micro-reactor with Cu–SiO2 porous catalyst. International Journal of Hydrogen Energy, 44(36), 19628-19639.
[3]        Uyar, T. S., & Beşikci, D. (2017). Integration of hydrogen energy systems into renewable energy systems for better design of 100% renewable energy communities. International Journal of Hydrogen Energy, 42(4), 2453-2456.
[4]        Tajrishi, O. Z., Taghizadeh, M., & Kiadehi, A. D. (2018). Methanol steam reforming in a microchannel reactor by Zn-,Ce-and Zr-modified mesoporous Cu/SBA-15 nanocatalyst. International journal of hydrogen energy, 43(31), 14103-14120.
[5]        Men, Y., Kolb, G., Zapf, R., Tiemann, D., Wichert, M., Hessel, V., & Loewe, H. (2008). A complete miniaturized microstructured methanol fuel processor/fuel cell system for low power applications. International Journal of hydrogen energy, 33(4), 1374-1382.
[6]        Hessel, V., Renken, A., Schouten, J. C., & Yoshida, J. I. (Eds.). (2009). Micro Process Engineering, 3 Volume Set: A Comprehensive Handbook (Vol. 1). John Wiley & Sons.
[7]        Soler, L., Divins, N. J., Vendrell, X., Serrano, I., & Llorca, J. (2020). Hydrogen production in microreactors. In Current Trends and Future Developments on (Bio-) Membranes. 141-182 Elsevier.
[8]        Lu, W., Zhang, R., Toan, S., Xu, R., Zhou, F., Sun, Z., & Sun, Z. (2022). Microchannel structure design for hydrogen supply from methanol steam reforming. Chemical Engineering Journal, 429, 132286.
[9]        Su, L., Yang, Y., Chu, X., Zheng, T., Zhang, J., & Fu, T. (2020). Multi-scale microchannel processing and hydrogen production performance of microreactors for methanol reforming. Journal of Renewable and Sustainable Energy, 12(4).
[10]      Zeng, D., Pan, M., Wang, L., & Tang, Y. (2012). Fabrication and characteristics of cube-post microreactors for methanol steam reforming. Applied Energy, 91(1), 208-213.
[11]      Hwang, S. M., Kwon, O. J., & Kim, J. J. (2007). Method of catalyst coating in micro-reactors for methanol steam reforming. Applied Catalysis A: General, 316(1), 83-89.
[12]      Chen, Y., Zhang, C., Wu, R., & Shi, M. (2011). Methanol steam reforming in microreactor with constructal tree-shaped network. Journal of Power Sources, 196(15), 6366-6373.
[13]      Suh, J. S., Lee, M. T., Greif, R., & Grigoropoulos, C. P. (2007). A study of steam methanol reforming in a microreactor. Journal of Power Sources, 173(1),
458-466.
[14]      Zheng, T., Zhou, W., Yu, W., Ke, Y., Liu, Y., Liu, R., & San Hui, K. (2019). Methanol steam reforming performance optimisation of cylindrical microreactor for hydrogen production utilising error backpropagation and genetic algorithm. Chemical Engineering Journal, 357, 641-654.
[15]      Chen, J., Yan, L., Song, W., & Xu, D. (2018). Comparisons between methane and methanol steam reforming in thermally integrated microchannel reactors for hydrogen production: a computational fluid dynamics study. International Journal of Hydrogen Energy, 43(31), 14710-14728.
[16]      Lu, W., Zhang, R., Toan, S., Xu, R., Zhou, F., Sun, Z., & Sun, Z. (2022). Microchannel structure design for hydrogen supply from methanol steam reforming. Chemical Engineering Journal, 429, 132286.
[17]      Purnama, H., Ressler, T., Jentoft, R. E., Soerijanto, H., Schlögl, R., & Schomäcker, R. (2004). CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Applied Catalysis A: General, 259(1), 83-94.
[18]      Agrell, J., Birgersson, H., & Boutonnet, M. (2002). Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation. Journal of power sources, 106(1-2), 249-257.