Calculation of Exergy Loss in Process Industries Using Omega-Enthalpy Diagram

Document Type : Original Article

Authors

University of Tehran

Abstract

Having calculated the exergy loss for all pieces of process equipment, it is possible to show the thermodynamic irreversibility, which makes certain guidelines for modifying the process industries and improving their performance. In this study the exergy loss is calculated using Omega Composite Curves, which is a novel graphical tool for calculating exergy loss in heat exchanger networks. Unlike other current tools, this graph is linear and calculation of exergy loss using the rectangular shaped area is so easy. The Omega-Enthalpy diagram is used to calculate exergy loss for other unit operations. First, how to achieve this diagram is explained and then the diagrams are used for exergy loss calculation in two case studies. In the first study, each of a PRICO process (LNG production) equipment was investigated especially the multi-stream heat exchanger. The results showed that in the whole process 27.66 MW of exergy is wasted. In the second study, the heat exchanger network of Shazand thermal power plant was investigated and exergy loss of this network was calculated by 8.14 MW.

Keywords


Panjeshahi, M. H., Tahouni, N., "Development of a new graphical tool for calculation of exergy losses in sub-ambient processes", Chemical Engineering Transactions, 76, pp. 433-438, (2019).
[2]        Bendig, M., Maréchal, F., Favrat, D., "Defining the potential of usable waste heat in industrial processes with the help of pinch and exergy analysis", Chemical Engineering Transaction, 29, pp. 103-108, (2012).
[3]        Ghorbani, B., Salehi, G. R., Ghaemmaleki, H., Amidpour, M., Hamedi, M. H., "Simulation and optimization of refrigeration cycle in NGL recovery plants with exergy-pinch analysis", Journal of Natural Gas Science and Engineering, 7, pp. 35-43, (2012).
[4]        Hackel, R., Harvey, S., "Applying exergy and total site analysis for targeting refrigeration shaft power in industrial clusters", Energy, pp. 55, 5-14, (2013).
[5]        Mafi, M., Ghorbani, B., Amidpour, M., Mousavi Naynian, S. M., "Design of Mafmixed refrigerant cycle for low temperature processes using a thermodynamic approach", Scientia Iranica, 20,
pp. 1254-1268, (2013).
[6]        Stijepovic, M. Z., Papadopouos, A. I., Linke, P., Grujic, A., Seferlis, P., "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle process" Energy, 69,
pp. 285-298, (2014).
[7]        Arriola-Medellin, A., Manzanares-Papayanopoulos, E., Romo-Millares, C., "Diagnosis and redesign of power plants using combined pinch and exergy analysis", energy, 72, pp. 643-651, (2014).
[8]        Njoku, H. O., Egbuhuzor, L. C., Eke, M. N., Enibe, S. O., Akinlabi, E. A., "Combined pinch and exergy evaluation for fault analysis in a steam power plant heat exchanger network", Journal of Energy Resources Technology, 141, pp. 1-10, (2019).
[9]        Mehdizadeh Fard, M., Pourfayaz, F., Mehrpooya, M., Kasaeian, A.," Improving energy efficiency in a complex natural gas refinery using combined pinch and advanced exergy analyses", Applied Thermal Engineering, 137, pp. 341-355, (2018).
[10]      Feng, X., Zhu, X. X., "Combining pinch and exergy analysis for process modifications", Applied Thermal Engineering, 17(3), pp. 249-261, (1997).
[11]      Kim, J. K., Lee, G. C., Zhu, F. X. X., Smith, R., "Cooling system design" heat transfer engineering, 23(6), pp. 49-61, (2002).
[12]      Anantharaman, R., Abbas, O. S., Gundersen, T., "Energy level composite curves-a new graphical methodology for the integration of energy intensive processes", Applied Thermal Engineering, 26,
pp. 1378-1384, (2006).
 
 
[13]      Marmolejo-Correa, D., Gundersen, T., "New graphical representation of exergy applied to low temperature process design", Industrial and Engineering Chemistry Research, 52, pp. 7145-7156, (2013).
[14]      Lei, Y., Zeng, D., Wang, G., "Improvement potential analysis for integrated fractionating and heat exchange processes in delayed coking units", Chinese Journal of Chemical Engineering, 24, pp. 1047-1055, (2016).
[15]      Shivaee-Gariz, R., Tahouni, N., Panjeshahi, M. H., Abbasi, M., "Development of a New Graphical Tool for Calculation of Exergy Losses to Design and Optimisation of Sub-Ambient Processes", Journal of Cleaner Production, 275, pp. 123161, (2020).
[16]      Smith, R., Chemical Process Design and Integration, Second Edition, UK, John Wiley and Sons, (2016).
 
[17]      Kim, J.-K., Lee, G.C., Zhu, F.X., Smith, R., "Cooling system design. Heat Transfer Engineering", 23(6),
pp. 49-61, (2002).
[1۸]    احمدی، س.، جعفری نصر، م. ر.، "بهینه‏سازی چندهدفه و تحلیل اکسرژی فرایند مایع‎‏سازی گاز طبیعی با مبرد آمیخته"، پژوهش نفت، 29(6)، ص 51-37، (1398).
[1۹]    مبصری، آ.، طاهونی، ن.، سبزچی اصل، س.، "مروری بر روش‌های افزایش بازده در نیروگاه‌های حرارتی و مطالعۀ نیروگاه شازند"، نشریۀ‌ مهندسی شیمی ایران، 18(102)، ص 40-27، (1398).