Experimental Modeling of CO2 Absorption into Monoethanolamine Amine Using Response Surface Methodology

Document Type : Original Article

Authors

Iran University of Science and Technology

Abstract

Carbon dioxide gas is one of the main environmental pollutants that can cause irreparable damage by changing the climate, so solving this problem requires serious attention. Chemical absorption of CO2 with alkanoamine aqueous solutions is currently the most common commercial method of high-efficiency separation in the industry. Among the various methods of removing carbon dioxide from flue gases, the monoethanolamine (MEA) aqueous solvent absorption process has been the most important option for industrial applications in recent years. In this research, MEA solvent has been used to evaluate the amount of CO2 absorption. The experimental range of the studied parameters includes temperature of 20-60 C, pressure of 3.5-9.5 bar and solvent concentration of 2.5-8.5% w. Loading and CO2 absorption percent in MEA aqueous solution were obtained in the range of 0.70-2.615 and 17.81-48.65%, respectively. To analyze the results, the quadratic polynomial model using the response surface method (RSM) has been used. Numerical optimization has also been used to find the maximum loading and absorption percent under optimal conditions. Under optimal conditions, the maximum loading and absorption percent are estimated to be 0.552 and 44.17%, respectively.

Keywords


[1]        Apergis, N., Aye, G. C., Barros, C. P., Gupta, R., Wanke, P., "Energy efficiency of selected OECD countries: A slacks based model with undesirable outputs", Energy Economics, 51: pp. 45-53, (2015).
[2]        Tian, H., Lu, C., Ciais, P., Michalak, A. M., Canadell, J. G., Saikawa, E., Yang, J., "The terrestrial biosphere as a net source of greenhouse gases to the atmosphere", Nature, 531(7593), pp. 225-228, (2016).
[3]        Rinprasertmeechai, S., Chavadej, S., Rangsunvigit, P., Kulprathipanja, S., "Carbon dioxide removal from flue gas using amine-based hybrid solvent absorption", International Journal of Chemical and Biological Engineering, 6: pp. 296-300, (2012).
[4]        Ghaemi, A., Shahhosseini, S., Maragheh, M. G., "Nonequilibrium dynamic modeling of carbon dioxide absorption by partially carbonated ammonia solutions", Chemical Engineering Journal, 149(1-3): pp. 110-117, (2009).
[5]        Norouzbahari, S., Shahhosseini, S., Ghaemi, A., "Modeling of CO2 loading in aqueous solutions of piperazine: Application of an enhanced artificial neural network algorithm", Journal of Natural Gas Science and Engineering, 24: pp. 18-25, (2015).
[6]        Khajeh Amiri, M., Ghaemi, A., Arjomandi, H., "Experimental, Kinetics and Isotherm Modeling of Carbon Dioxide Adsorption with 13X Zeolite in a fixed bed column". Iranian Journal of Chemical Engineering (IJChE), 16(1): pp. 54-64, (2019).
[7]        Pashaei, H., Ghaemi, A., Nasiri, M., "Experimental investigation of CO2 removal using Piperazine solution in a stirrer bubble column", International Journal of Greenhouse Gas Control, 63: pp. 226-240, (2017).
 
 
[8]        Hayer, H., Ghaemi, A., "Modeling of simultaneous heat and mass transfer in hollow fiber membranes", International Journal of Chemical Modeling, 6(1):
pp. 25, (2014).
[9]        Ghaemi, A., Behroozi, A. H., "Comparison of hydroxide-based adsorbents of Mg (OH)2 and Ca (OH)2 for CO2 capture: utilization of response surface methodology, kinetic, and isotherm modeling", Greenhouse Gases: Science and Technology, (2020).
[10]      Taheri, F. S., Ghaemi, A., Maleki, A., Shahhosseini, S., "High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an
eco-friendly nanocomposite". Energy & Fuels, 33(6): pp. 5384-5397, (2019).
[11]      Mohammad, N. K., Ghaemi, A., Tahvildari, K., "Hydroxide modified activated alumina as an adsorbent for CO2 adsorption: experimental and modeling". International Journal of Greenhouse Gas Control, 88: pp. 24-37, (2019).
[12]      Khajeh, M., Ghaemi, A., "Exploiting response surface methodology for experimental modeling and optimization of CO2 adsorption onto NaOH-modified nanoclay montmorillonite", Journal of Environmental Chemical Engineering, 8(2): pp. 103663, (2020).
[13]      Pashaei, H., Ghaemi, A., Nasiri, M., Karami, B., "Experimental modeling and optimization of CO2 absorption into piperazine solutions using RSM-CCD methodology", ACS omega, 5(15): pp. 8432-8448, (2020).
[14]      Fashi, F., Ghaemi, A., Behroozi, A. H., "Piperazine impregnation on Zeolite 13X as a novel adsorbent for CO2 capture: experimental and modeling", Chemical Engineering Communications, pp. 1-17, (2020).
[15]      Lee, D. H., Choi, W. J., Moon, S. J., Ha, S. H., Kim, I. G., Oh, K. J., "Characteristics of absorption and regeneration of carbon dioxide in aqueous 2-amino-
2-methyl-1-propanol/ammonia solutions", Korean Journal of Chemical Engineering, 25(2): pp. 279-284, (2008).
[16]      Aronu, U. E., Gondal, S., Hessen, E. T.,
Haug-Warberg, T., Hartono, A., Hoff, K. A., Svendsen, H. F., "Solubility of CO2 in 15, 30, 45 and 60 mass% MEA from 40 to 120 C and model representation using the extended UNIQUAC framework", Chemical Engineering Science, 66(24): pp. 6393-6406, (2011).
[17]      Gomes, J., Santos, S., Bordado, J., "Choosing amine-based absorbents for CO2 capture". Environmental technology, 36(1): pp. 19-25, (2015).
[18]     ذوالفقاری، س.، هنرور، د.، ب.، "بررسی تأثیر غلظت، دما و فشار بر حلالیت گاز CO2 بر محلول  MEA"، پنجمین کنفرانس بین‌المللی پزوهش‌های کاربردی در شیمی و مهندسی شیمی با تأکید بر فناوری‌های بومی ایران، 11–1، (1396).
[19]     Ghaemi, A., "Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution", Polish Journal of Chemical Technology, 19(3): pp. 75-82, (2017).
[20]      Ghaemi, A., "Mass Transfer Modeling of CO2 Absorption into Blended MDEA-MEA Solution". Journal of Chemical and Petroleum Engineering, 54(1): pp. 111-128, (2020).
[21]      Karnwiboon, K., Saiwan, C., Idem, R., Supap, T., "Tontiwachwuthikul, P., Solvent Extraction of Degradation Products in Amine Absorption Solution for CO2 Capture in Flue Gases from Coal Combustion: Effect of Amines", Energy Procedia, 114: pp.1980-1985, (2017).
[22]      Neagu, M., Onuţu, I., "The Study of CO2 Removal by Aqueous Solution of Methyldiethanolamine through Absorption Process", Petroleum-Gas University of Ploiesti Bulletin, Technical Series, 68(2), (2016).
[23]      Gupta, M., Coyle, I., "Thambimuthu, K., CO2 capture technologies and opportunities in Canada", In 1st Canadian CC&S Technology Roadmap Workshop, 18: 19, (2003).
[24]      Saeidi, M., Ghaemi, A., Tahvildari, K., Derakhshi, P., "Exploiting response surface methodology (RSM) as a novel approach for the optimization of carbon dioxide adsorption by dry sodium hydroxide", Journal of The Chinese Chemical Society, 65(12):
pp. 1465-1475, (2018).
[25]      Kim, Y. E., Lim, J. A., Jeong, S. K., Yoon, Y. I., Bae, S. T., Nam, S. C., "Comparison of carbon dioxide absorption in aqueous MEA, DEA, TEA, and AMP solutions", Bulletin of the Korean Chemical Society, 34(3): pp. 783-787, (2013).
[26]      Amiri, M., Shahhosseini, S., Ghaemi, A., "Optimization of CO2 capture process from simulated flue gas by dry regenerable alkali metal carbonate based adsorbent using response surface methodology", Energy & Fuels, 31(5):
pp. 5286-5296, (2017).
[27]      Leonzio, G., "Optimization through response surface methodology of a reactor producing methanol by the hydrogenation of carbon dioxide", Processes, 5(4):
p. 62, (2017).
[28]      Mourabet, M., El Rhilassi, A., El Boujaady, H., Bennani-Ziatni, M., Taitai, A., "Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite", Arabian Journal of Chemistry, 10: pp. S3292-S3302, (2017).