Two-Phase Flow Analysis in the Recirculation Region of a Gas Turbine Combustion Chamber by Changing Effective Geometrical Parameters

Document Type : Original Article

Authors

1 Research Institute of Petroleum Industry

2 Islamic Azad University, Science and Research Branch

Abstract

The purpose of this study is to analyze the two-phase flow in the recirculation region of a gas turbine combustion chamber by changing the effective geometrical parameters of its swirler. The natural and forced rotational flows caused by the geometry of the combustion chamber and flow field conditions have significant effects on combustion and air-fuel mixing. In this study, finite volume method and unstructural meshing are used in a commercial computational fluid dynamics software package in order to investigate the effects of rotational flow injection in combustion chamber and to carry out a parametric study. The obtained results show the volume of the recirculation zone in the primary area of the combustion chamber increases as the swirl number rises. This increases the turbulence intensity and improves air-fuel mixing.

Keywords


 

[1]        Lefebvre, A. H., Ballal, D. R., "Gas Turbine Combustion: Alternative Fuels and Emissions", Third Edition, New York: CRC Press, (2010).
[2]        Guoqiang, L., Gutmarl, E. J., "Effects of Swirler Configuration on Flow Structures and Combustion Characteristics", ASME Paper No. GT2004-53674, (2004).
[3]        Micklow, G. J., Roychoudhury, S., Nguyen, H. L., Cline, M. C., "Emission Reduction by Varying the Swirler Airflow Splits in Advanced Turbine Combustors", Journal of Engineering for Gas Turbines and Power, Vol. 115, pp. 563-569, (1993).
[4]        Gupta, A. K., Lewis, M. J., "Effect of Swirl on Combustion Characteristics in Premixed Flames", Transactions of the ASME, Vol. 120, pp. 488-494, (1998).
[5]        Mattingly, J. D., Heiser, W. H., Pratt, D. T., "Aircraft Engine Design", Second Edition, AIAA Education Series, (2002).
[6]      جهرمی، م.، "ترکیب اثر چرخاننده و جت‌های هوای ورودی در ناحیۀ اولیۀ محفظۀ احتراق توربین گاز"، پایان‌نامۀ کارشناسی ارشد، دانشکدۀ مهندسی مکانیک، دانشگاه علم وصنعت ایران، (1381).
[7]        Chen, B., Ho, K., Qin, F. G. F., Jiang, R., Akbar, Y. A., Chan, A., "Validation and Visualization of Decaying Vortex Flow in an Annulus", Energy Procedia, Vol. 75, pp. 3098-3104, (2015).
[8]        Weiye, H., Yuzhen, L., Chi, Z., Chih-Jen, S., "Effect of Boundary Conditions on Downstream Vorticity from Counter-Rotating Swirlers", Chinese Journal of Aeronautics, Vol. 28, pp. 34-43, (2015).
[9]        Hao, Q., Yuzhen, L., Jibao, L., "Precessing Motion in Stratified Radial Swirl Flow", Chinese Journal of Aeronautics, Vol. 29, pp. 386-394, (2016).
[10]      Bhuvana, R. G., Srinivasan, S. A., Murugan, D. T., "CFD Analysis on Swirl Angle Effect in Gas Turbine Combustion Chamber", IOP Conference Series: Materials Science and Engineering, Vol. 402, 2nd International Conference on Advances in Mechanical Engineering (ICAME 2018), Kattankulathur, India, (2018).
[11]      Vashahi, F., Rezaei, S., Alidoost Dafsari, R., Lee, J., "Sensitivity Analysis of the Vane Length and Passage Width for a Radial Type Swirler Employed in a Triple Swirler Configuration", Theoretical & Applied Mechanics Letters, Vol. 9, pp. 363-375, (2019).
[12]      Fan, X., Liu, C., Xu, G., Zhang, C., Wang, J., Lin, Y., "Experimental Investigations of the Spray Structure and Interactions between Sectors of a Double-Swirl Low-Emission Combustor", Chinese Journal of Aeronautics, Vol. 33, No. 2, pp. 589-597, (2020).
[13]      Kleinstreuer, Cl., "Two-Phase Flow: Theory and Applications", Frist Edition, CRC Press, (2003).
[14]    شجاعی‌فرد، م. ح.، طحانی، م.، "مقدمه‌ای بر جریان‌های آشفته و مدل‌سازی‌های آن"، ویرایش اول، تهران: انتشارات دانشگاه علم و صنعت ایران، (1391).