بررسی فرایندهای نایپوسته اسفنجی شدن بیلی استایرن
و پیل متیل متاکریلات

حمید رضا عظیمی

استادیار مهندسی پلیمر، دانشگاه مراغه
تاریخ دریافت: ۱۴/۰۶/۰۳
تاریخ پذیرش: ۱۴/۰۳/۰۳
h_azimi@maragheh.ac.ir

چکیده
در این تحقیق، بعد از توضیح مراحل اسفنجی شدن بیسیار و مباحث نظری آن، بی‌ریز مطالعات مختلف پیروان فرایندهای استفنجی شدن بیلی استایرن و پیل متیل متاکریلات، با بهره‌گیری از عوامل پیش‌زمینه متفاوت برداشتند به‌صورت یکی از روش‌های معمول بررسی ریخت‌شناسی نمونه‌های نهایی اسفنجی، روش میکروسکوپی الکترونی دیدمیکی است. این ابزار روش اطلاعات دقیقی در مراحل اسفنجی شدن بیسیار در اختیار قرار نمی‌دهد. بنابراین، برای حذف کیفیت، الگوهای مورد نیاز تازه بیلی استایرن است. به‌منظور اطمینان از کلمه آن بتوان اطلاعاتی راجع به تشکیل بیکنگ به‌صورت چوبی، استادی و هم چندین سلول به‌دست آورد. برای این منظور در این تحقیق روش جدیدی به نام بازیابی مشاهده‌ای برای مطالعه و بررسی دینامیک قرار داده شده است. اسفنجی شدن معرفی شده و مطالعات مناسب با روش‌های دیگری مختلف عملیاتی، مورد مطالعه قرار گرفته است. در نهایت، مشخص شد که متفاوت‌های مانند دما، فشار و زمان اسفنجی شدن تاثیر مستقیمی در فرایندهای تئوری پذیر نبودند.

کلیدواژه‌ها: پیل استایرن، پیل متیل متاکریلات، فرایندهای اسفنجی شدن، روش مشاهده‌ای

1. مقدمه
اسبساتوری، اجسامی دو فازی و که فاز پلایستیکی آنها ساختار جامد و فاز گازی در نقش پرکیسه این استفنجی بیلی استایرن در قالب ساختارهای بااختیاری برای بااختیاری بیان‌گری زیر میکروبرندهای ماهی‌ها. به‌منظور پیدایش بیسیار کوچک‌تر کننده می‌شوند. چگالی استفنجی در حدود یکصد بیلی پایه، اسفنج‌ها کاربردهای بیسیار در ساخت میلیمان، وسایط ترکیبی سنتی، صنایع لازیکی و کریستال‌سازی، لوله‌ورزشی و مانند آنها دارد. ماتریس (قاب) بیسیار در استفنج‌ها پیشرو تأمین‌سازه‌ها (موادگرم‌مانه) هستند. به‌منظور تولید نیک اسفنج فرایندهای

* مراغه، دانشگاه مراغه، دانشکده فیزی و مهندسی، گروه مهندسی شیمی

نشریه مهندسی شیمی ایران - سال چهاردهم - شماره هفتاد و یکم (۱۳۹۴)
1. Henry
2. Scanning Electron Microscopy (SEM)
3. Visual

1.1 پلاستیک‌های اسفنجی تجاری

اسفنج شده بری سیاره‌ای تجاری در مطالعات مختلف گزارش شده است. (20) پی اس-1 (PS) یکی از پیشرفت‌های مهم است. که تولید آن با شکل دادن به حدود 100 میلی‌متری در سال، بخش عمده‌ای از تولید سالانه این پیشرفت (15 تا 20 درصد) را می‌گذارد. این اسفنج‌های مصنوعی گاهی برای کار مو در زیاده‌سازی، خواص کوری‌سازی، مقاومت علی در برای آب و گیاه خیلی بی‌بین، به مدت‌ها این اسفنج‌های بیشتر به بی‌بین، طول و وسیعی از کاربردها مانند سنتز‌دهی، ثبات‌سازی و عایق کار برای سیستم‌های شنیده‌ای (12). تعدادی از فرآیندهای تولید اسفنج‌های پی‌اس-1، می‌تواند به توجهی بنیادی که در جمله مربوط آمده‌اند، فرآیند کاربردی مستقیم برای تولید صفحات تبادلی، به تنهایی دانه‌ای قابل بسامت (با دانه‌ها) هستند (15-16).

1.2 مباحث نظری

فرآیند اسفنجی شدن شمای مراحلی از این قرار است: تشکیل سلول (هیپ) و ردش آن. به‌طوری که هر یک از این مراحل می‌تواند ریختارشیاسی و در نهایت، ساختار فوم نهایی را تحت شعاع قرار گیرد. هسته‌هایی که در طی آن جدایش فازی اتفاق می‌افتد، این جدایش قار می‌تواند برحتر تشکیل یک
که مرحله تزییق عامل نفوذ (پنیتان) است، موارد موجود تحت جریان

مانند فرآیندهای نابیابی، استحکام و تزییق برای مطالعه فرآیند

اسفنجی شدن استفاده شده است که در آن علاوه بر مشکلات

مربط به کنترل هضم پارامترهای مختلف در طول فرآیند، سوال

درک در تشکیل و شکل جدایی نیز وجود دارد. به هر حال از این

مجموعه در واقع نوعی شیمی‌سازی تجویزی می‌باشد که

پارامترهای از آن آزمایش یک آزمایش پیچیده کنترل

تشنج و ثابتی به راحتی نجزی و تحلیل می‌شود. این نوع شیمی‌سازی
tبراساس خواص پایانی این سایه گرمی‌ولکانیک و زیست‌پزشکی

محلول‌های سیلیکا - گاز تجویز بایستی رشد آن در همراه

اولیه فرآیند استفنجی شدن روش می‌کند. در مقایسه با روش‌های

معمول فرآیند استفنجی شدن این روش از مراحل زیب بروخوردار

است.
1. ماهیت لحاظ به هدف تشکیل حباب، رشد و به هم چسبیدن

ان در مرحله اول فرآیند استفنجی شدن به جای فقط

بهره‌مندی از آنالیز SEM از ساختار استفنج نهایی;
2. تاکید مهم هر پارامتر در کیفیت نهایی اسنجی;

3. به هدف آوردن داده‌های صحیح (تشکیل و رشد حباب) به

این نتایج به توضیحات اولین شده در بخش پیشین، در مورد فرآیند

نابیابی فرآیند استفنجی نشدن و نیز اهمیت مطالعه بنیادی روی

نحوه استفنجی در روش مطالعه داده در این قسمت به بررسی
برخی مطالعات انجام گرفته در زمینه فرآیندهای نابیابی استفنجی

شنید برداشت شده است.


1. Polymethyl Methacrylate (PMMA)
زمان‌های مختلف افت فشار و در دما و فشار یکسان آورده شده است. در این شکل به وضوح مشخص است که با سیری شدن زمان، اندازه باخته‌ها بیشتر می‌شود و جگالی اسفنج نهایی و نیز ضخامت دیواره بین سلول‌ها به شدت کاهش پیدا می‌کند. در واقع، در زمان‌های طولانی تر ریخت‌شناșی اسفنج نهایی کمتر همگن خواهد بود.[19]

(الف) تصاویر SEM مربوط به (الف) پلی استاترین بی‌ساختاری و (ب) پلی متیل متاکریلات انسپستی [17]

فرآیند استقیای شدن پلی متیل متاکریلات با بهره‌گیری از کربن دی‌اکسید فوق بخاری به دو مرحله تقسیم شده است [19]. در مرحله اول شامل انباشته‌بندی با گاز است. به‌طوری‌که این امر موجود به‌وجود امتدان اثر بستری سایز شدن بیشتر و دما انتقال شیشه‌ای بسیاری، موجب شکل زیر کاهش پیدا می‌کند. در مرحله بعد با استفاده از بستر متورم می‌شود. سپس، با کاهش فشار و ایجاد شرایط‌های جدید کاهش ضخامت نتیجه‌گیری صورت گرفته و رشد باخته‌ها آغاز می‌شود. به این دلیل، مقدار گاز موجود در ماتریس بسیار کاهش می‌یابد و دمای انتقال شیشه‌ای بیشتر دوباره افزایش می‌یابد. در یک نقطه خاص، بستر به حال شیشه‌ای خود می‌گردد و رشد باخته‌ها منتقل می‌شود. تصاویر SEM از استحکام‌ها در فشار 200 پاس و در دماهای مختلف نشان داده که با افزایش دما اندازه باخته‌ها بیشتر می‌شود و ضخامت دیواره‌های آنها کاهش می‌یابد و در نتیجه جگالی اسفنج کاهش پیدا می‌کند [19]. در شکل (2) تصاویر SEM نمونه‌های استقیای در زمان‌های (الف) کمتر از یک ثانیه (ب) ۲۵ ثانیه (ب) ۱۰۰ ثانیه و (ت) ۲۰۰ ثانیه [19].
درگیر می‌شود. در زمینه فرانشکه نانوپوسته اسفنجی شدن پلی استاتور با عوامل فیزیکی مانند کردن دی اکسید نیژ مطالعات انگلیسی گرفته است (20-21). در مطالعه دیدگری مهاجر، ذوب نانوپوسته اسفنجی شدن بر روی پلی استاتور نسبت به دی نانوپوسته بسیار بالا است. در این مطالعه، ساختار بسیار جذب شده در زمان تلقیح بسیاری دارد. فرانشکه نانوپوسته اسفنجی شدن به نسبت حجم مورد ذره با حجم ذره قبل از اسفنجی شدن پلی اسکورین با پشت در فشار تابید اتمام نمی‌شود. به طوری که در افزایش تلقیح، یابند با پشت شارژ می‌شود و وقتی جذب پشت در ذره پلی اسکورین گرفت، فشار کاهش می‌یابد. بعد از زمان تلقیح، این گرفت مورد برای انسحب ذره ضبط می‌شود (در این حالت خلاف پرکوام). تا نشانه از ۰.۲ به ۰.۴۵ بار کاهش می‌یابد (جذب پشت). در شکل (۵) زمان تحقیق بالا مشاهده است.

شکل ۶. نمودار سیستم به‌کار گرفته شده در آزمایش (۲۱).

در این دستگاه، حمام روف سیلیکونی به عنوان میکرو گرم‌کننده استفاده می‌شود. دانه به تک سوزنی وصل و در زمان‌های مختلف در دمای ۰۵ درجه سلسیوس از انسحب دانه عکس گرفته می‌شود (شکل ۶). در این تصویر نسبت حجم انسحب به حجم لوله دانه محاسبه و بر حسب زمان ترمیم می‌شود.

شکل ۷. تصاویر متواوی گرفته شده از روش ذره (۲۱).

در این مطالعه، آزمایش‌های مختلفی با اندازه‌های مختلف ذره انجام شده است. (۲۰) به طوری که با اندازه‌های اندوز ذرات ضریب اسفنجی شدن افزایش یابد. در این سیستم می‌توان این است که ذرات بزرگ‌تری نسبت سطح به حجم کمتری داشته و در نتیجه شار نفود بسته به میکروخلخل و در وقت حجم ذره کمتر است. بنابراین، ذرات بزرگ‌تر مقادیر کمتری از پشت را به‌طور نفوذ به پشت ریزسازی دست می‌دهند. در نتیجه پشت بیشتری در تشکیل و رشد تک‌پوسته‌ها
در سال 1996، رفتن در حال حاضر و همکارانش بررسی کردند. به‌طوری‌که خواص ترومفرزیکی و نیز خواص رئولوژیکی مخلوط سپیر-گاز، مانند خورشید، نشان داده شده است. این بررسی در این مطالعه در احتمال گریه شده است. در این و در این مطالعه، افراد پارامترهای ترومفرزیکی و رئولوژیکی روز رفتار انسانی یک حیوان بررسی شده است. چنان‌که با استفاده از فنون‌بی‌دری، بررسی بررسی شد. حداقل نتایج این سلسله‌ای نیز کاهش می‌یابد و در نتیجه در مراحل اولیه، سرعت رشد حیوان افزایش می‌یابد. در این مطالعه، بررسی‌های مطالعاتی باعث شده باشد.

شکل 8: ابعاد دانه در حال انقباض در دو آهنگ حرارت دهی بالا و پایین (20)

1. Leung
2. Taki

شماره مهندسی شیمی ایران - مدل چهاردهم - شماره هشتم و یکم (1394)


