بررسی طراحی و ساخت کاتالیست با پایه کربنی
جهت حذف ترکیبات آلی فرار

محمد دیبیح، چالگه شایگان
فرهاد خرآهر، مهدی همبی راد
تهران، دانشگاه صنعتی شریف، دانشکده مهندسی شیمی و نفت
شیاینگان@sharif.edu

چکیده
آلودگی هوای در اثر تولید صنعتی و فناوری‌های نوین همواره از اساسی ترین تهدیدهای زیست محیطی بوده و به عنوان منشأ ترکیبات آلی آلودگی، توجه محضتین جهت حذف این آلودگی‌ها را به دست می‌دهند. در این مقاله، به بررسی کاتالیس‌های آبی که می‌توانند برای حذف ترکیبات آلی فرار با ترکیب پایه‌ای کربنی می‌باشند، پایه‌های کربنی به دلیل صخannesیات سطحی مناسب اعضاً از سطح فعال و تخلخل بالا و همچنین طراحی و ساخت انواع مختلف از مواد، دارای گرت و در دسترس، توجه پژوهشگران را به دست یافته کرده است. مطالعه فناوره، عده‌های پایه‌ای آلی فرار با وجود قابلیت و بارزی بالا در فردی اکساپسی ترکیبات آلی، به دلیل قیمت بالا و موجب شده است. این مقاله به فناوره و در کنار توجه قرار گیرد. همچنین از منابع‌های عملیاتی، تأثیر دما و دمای بالا با نام‌گذاری آلودگی کربنی بر اکساپسی به صورت مختصر و بررسی فوره قرار گرفته است.

کلمات کلیدی: کاتالیست، آلی فعال، فناژات نجیب، فناژات واسطه، اکساپسی، جذب سطحی، ترکیبات آلی فرار

محاسبه می‌شود، فشار بالا مواد آلی فرار به میزان بالاتر که در شرایط نرمال تبخیر بالایی دارد و وارد انسفر می‌شوند. انتشار این ترکیبات در تولید بخار های اسیدی، کاهش لایه اوزن و ایجاد اکسیدان‌های نورشیمی‌ای سیست مولت است (1). یکی از مهترین
منابع انتشار مواد آلی فرار، صنایع پتروشیمی هستند. البته صنایع دیگری مانند تولید کننده‌های نگ، صنایع خودروسازی و خارجی‌انه
تولید بالا همین نسبت بیشتری نسبت به آلودگی محیط زیست به ترکیبات آلی آلودگی را دارند (2). ترکیبات آلی آلودگی با توان به دو گروه آلی‌ایتیکی و آلترناتیکی تقسیم کرد که در جدول (1) به برخی از مداوم این مواد اشاره شده است (1). تولید و زاین

1. Noble
2. Transition
3. Environmental Protection Agency
4. Volatile Organic Compounds

نشریه مهندسی شیمی ایران - سال دوازدهم - شماره شصت و نهم (۱۳۹۴)
این ترکیبات بعث عناوین اندازه اندازه مخرب قراردادی به روی انسان دارد. اختلالات در سیستم عصبی، نارسایی های قلبی، بایین، سرطان های بینی و کبدی، بیماری‌های ناشی از اوج در نیروی ترکیبات آلی فراموش نمی‌گردد. بنابراین با توجه به مشکلات ناشی از انتشار ترکیبات آلی فرار، این ترکیبات کنار هم‌نشسته با میزان کم‌تری مصرف می‌کنند.

جدول ۱- نام برتخی از ترکیبات آلی فرار ممکن (۱)

<table>
<thead>
<tr>
<th>شماره</th>
<th>اسم فارسی</th>
<th>نام ترکیب (لاتین)</th>
<th>فرمول شیمیایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>استاندارد</td>
<td>Acetaldehyde</td>
<td>C₂H₄O</td>
</tr>
<tr>
<td>۲</td>
<td>استون</td>
<td>Acetone</td>
<td>C₃H₆O</td>
</tr>
<tr>
<td>۳</td>
<td>بنزن</td>
<td>Benzene</td>
<td>C₆H₆</td>
</tr>
<tr>
<td>۴</td>
<td>تری کلرید</td>
<td>Carbon tetrachloride</td>
<td>CCl₄</td>
</tr>
<tr>
<td>۵</td>
<td>اتانول</td>
<td>Ethanol</td>
<td>C₃H₈O₂</td>
</tr>
<tr>
<td>۶</td>
<td>اتانول</td>
<td>Ethylene glycol</td>
<td>C₂H₄O₂</td>
</tr>
<tr>
<td>۷</td>
<td>فرمالدهید</td>
<td>Formaldehyde</td>
<td>C₂H₅O</td>
</tr>
<tr>
<td>۸</td>
<td>هپتان</td>
<td>Heptane</td>
<td>C₇H₁₆</td>
</tr>
<tr>
<td>۹</td>
<td>متیل کلرید</td>
<td>Methyl chloride</td>
<td>CH₃Cl</td>
</tr>
<tr>
<td>۱۰</td>
<td>استین</td>
<td>Styrene</td>
<td>C₈H₈</td>
</tr>
<tr>
<td>۱۱</td>
<td>توئولون</td>
<td>Toluene</td>
<td>C₇H₈</td>
</tr>
<tr>
<td>۱۲</td>
<td>زایلن</td>
<td>Xylene</td>
<td>C₈H₁₀</td>
</tr>
</tbody>
</table>

۱. Micro pore
۲. Meso Pore

به دلیل کاربرد و سیستمی که در صنایع مختلف به عنوان ماده اولیه و مهندسی محیط زیست استفاده می‌گردد.
سیلیس و کربن فیبری به دلیل قیمت ارزان و سطح فیبر زاید بیشتر
از دیگر پاک‌های کاربرد مصرفی در فرآیند اکسانشیون از أنگیا کیکی از
محصولات این واکنش آب پاشید. انتخاب پایه از اهمیت خاصی
برخوردار است. جایگاه اکسانش در مدار اولین اتفاق بین‌بندی، بخار
آب داخل از فرآیند بر روی یک کربن‌پی شیمیایی چرب که این
مکانیسم بر روی تکنیک اکسانش خواهد داشت. از طرف دیگر
همواره شرط جهیزی که گونه‌های شاید که مقداری رطوبت در هوا
وجود دارد. این رطوبت توسط می‌تواند بر روی یک پایه آب نیسته
باید نشسته و روزنه‌ها ریز و درشت پایه را مسدود کند
[13-14]. یا کربن از جنس کربن فیبر به دلیل جذب
سطحی ترکیبات آبی بر روی سطح منشأ خود افزایش مسادود
شد روزنه‌ها را توسط مولکول‌های آب ناگهان داد. کربن فیبر به
دلیل رفتار ماده اولین از اورژانسی، افتراق مولکولی و دمای بالا
سطح فیبر، توزیع مناسب روزنه‌ها و همجین خاصیت آب‌گیری
آن، می‌تواند مناسب برای حذف ترکیبات آب قرار یابد [15].

مواد اولیه مختلف را می‌توان با عناصر الهام خام برای تولید کربن
فیبر به گرفت، مواد سولزی تظییر چرب، پوست نارنجی، هسته
میوه‌ها، سرپضایه کشی‌ور و مواد خام کربنی نظیر زغال سنگ،
کک فلزی، فلز، زغال سنگ و مواد خام بسیاری شامل
ضایعات فلز و استخوانها و بلاتسیک‌هایی از جمله آنها می‌باشد.
کربن فیبر از تحقیق مواد دختر حاصل شیمی شود و در
مراحل بعدی تحت عملیات فیبر سازی قرار می‌گیرد. در مرحله
کربنیکن اندازه‌ی گیر کربنیکن از قبل هیدروزور و اکسیژن به صورت
گاز خارج شده و کربن‌های آزاد به صورت گروهی، بلورها
گرافیت و جذب کم‌می‌باشد. محصول حرفه‌ای کربن‌کن
ظرفیت کرده کم می‌باشد و احتمالاً این مسئله به دلیل
کربن‌کن در دامای پایین و وجود ماده قیری بلوه‌ماده در روزنه‌ها
بن بلوه‌ها و بر روی سطح آنها می‌باشد. بعضی از محصولات
کربن‌کن‌شده را می‌توان از دست کاری ساخت ماده قیری به‌سیله حرارت
دان تحت گاز و عمل خالصی سازی به کمک خلا بی واکنش
شیمیایی فیبر کردن. عمل فیبر سازی باعث برگشت شدن قطر
رژن‌هایی می‌شود که در حین فرآیند کربنیکن ایجاد شده‌می‌باشد.
همچنین باعث ایجاد یک سری روزنه ریز نیز خواهد شد و
بدین گونه می‌توان به مکس ساختاری طبخی بر سطح داخلی بالا دست

1. Wu
بررسی طراحی و ساخت کاتالیست با پایه کربنی جهت حذف...
در جدول (۴) خلاصه‌ای از کاتالیست‌های ساخته شده برای حذف ترکیبات آلی فرار از هوا جمع‌آوری شده‌اند که می‌توانند اطلاعات مناسبی از مطالعات انجام گرفته و همچنین ابزاری مناسب برای ساخت کاتالیست‌های جدید ارائه دهند.

جدول ۲- (الف) خلاصه‌ای از کاتالیست‌های ساخته شده برای حذف ترکیبات آلی فرار از هوا

<table>
<thead>
<tr>
<th>مرجع</th>
<th>سطح عکال (m^2)</th>
<th>ماده حذف شونده</th>
<th>روش نهایی پایه‌گری</th>
<th>تیم</th>
<th>نوع کاتالیست</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۴</td>
<td>۹۶۲/۰۴</td>
<td>نولنون</td>
<td>کربن فعال نازکی</td>
<td>Co</td>
<td>Cu</td>
</tr>
<tr>
<td>۲۴</td>
<td>۹۷۲/۷۵</td>
<td>نولنون</td>
<td>کربن فعال نازکی</td>
<td>Co</td>
<td>Co</td>
</tr>
<tr>
<td>۲۴</td>
<td>۹۶۵/۸۳</td>
<td>نولنون</td>
<td>کربن فعال نازکی</td>
<td>Co</td>
<td>Fe</td>
</tr>
<tr>
<td>۲۴</td>
<td>۹۳۲/۱۲</td>
<td>نولنون</td>
<td>کربن فعال نازکی</td>
<td>Co</td>
<td>Ni</td>
</tr>
<tr>
<td>۲۴</td>
<td>۷۵۰/۷</td>
<td>(نولنون - راپین - بازرگان)</td>
<td>روشن‌فیزیکی</td>
<td>Cu</td>
<td>Cu</td>
</tr>
<tr>
<td>۲۱</td>
<td>۵۱۹</td>
<td>نولنون</td>
<td>-</td>
<td>Cu</td>
<td>styrene divinyl benzene copolymer</td>
</tr>
<tr>
<td>۲۲</td>
<td>۴۸۴</td>
<td>راپین مخلوط ابزارها (تجاری - پاراپل شده در دمای ۴۰۰ سیلوس)</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲۲</td>
<td>۵۳۰</td>
<td>راپین مخلوط ابزارها (تجاری - پاراپل شده در دمای ۴۰۰ سیلوس)</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲۲</td>
<td>۷۴۳</td>
<td>راپین مخلوط ابزارها (تجاری - پاراپل شده در HF)</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲۳</td>
<td>۱۰۵</td>
<td>نولنون</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲۶</td>
<td>۸۲۹</td>
<td>ارتور راپین</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲۷</td>
<td>۹۹</td>
<td>(نولنون - راپین - بازرگان)</td>
<td>کارا آزمایش</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲</td>
<td>۶۶۶</td>
<td>-</td>
<td>(Y-zeolite)</td>
<td>Ag</td>
<td>Ag</td>
</tr>
<tr>
<td>۲۸</td>
<td>۸۵۴</td>
<td>-</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۲۹</td>
<td>۸۵۹</td>
<td>(نولنون - راپین - بازرگان)</td>
<td>کربن فعال</td>
<td>Pt</td>
<td>Pt</td>
</tr>
<tr>
<td>۶</td>
<td>۳۰۱/۱۵</td>
<td>نولنون</td>
<td>(روشن‌فیزیکی - میکرو)</td>
<td>Co</td>
<td>Co</td>
</tr>
<tr>
<td>۶</td>
<td>۱۵۵۵</td>
<td>نولنون</td>
<td>(ZnCl۲ - روش شیمیایی - میکرو)</td>
<td>Co</td>
<td>Co</td>
</tr>
<tr>
<td>۶</td>
<td>۹۳۶</td>
<td>نولنون</td>
<td>(KOH - روش شیمیایی - میکرو)</td>
<td>Co</td>
<td>Co</td>
</tr>
<tr>
<td>۶</td>
<td>۱۰۳۰</td>
<td>نولنون</td>
<td>(تجاری - روشن‌فیزیکی - زنک)</td>
<td>Co</td>
<td>Co</td>
</tr>
<tr>
<td>۶</td>
<td>۱۰۰۸</td>
<td>نولنون</td>
<td>(تجاری - روشن‌فیزیکی - KOH)</td>
<td>Co</td>
<td>Co</td>
</tr>
</tbody>
</table>
جدول ۲ - (ب) خلاصه‌ای از کانالیست‌های ساخته شده برای هر لحظه ترکیبات آفی فرار از هوا

<table>
<thead>
<tr>
<th>نوع کانالیست</th>
<th>پاته</th>
<th>ماده حفظ شونده</th>
<th>سطح فعال (g)</th>
<th>مراجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZrO<sub>2</sub></td>
<td>Co3O4</td>
<td>Polyfurfuryl Alcohol (FFA)</td>
<td>1100</td>
<td>20</td>
</tr>
<tr>
<td>Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Au</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
عملیات تلفیق و تعریف بین می‌باشد، محلول فلز مورد توجه در تاسیس با کمک سطح مخالب و مداخله بعضان به کاتالیست قرار می‌گیرد. نیازی برای کاتالیست نه نه به فلزهای کاتالیزور واصله است بنا برای این کاتالیست نش تنزین کندیزی دارد (12) با توجه به مطالعات انجام شده برای حذف ترکیبات آلی فلز به خصوص تولوان، بزن و رالین از هوا استفاده از کاتالیزور بلندی و بالادیده می‌باشد. از آنجا که استفاده از این کاتالیست نهایی زیادی در بداند و پژوهشگران به استفاده از فلزات ارزان قیمت و در دسترس و آوردن. به کارگیری فلزاتی مانند آلیومینیوم، کلسیم، نیکل و مس به عنوان فلز کاتالیزور مانند ترکیبات آلی به‌پایه آلیکتانوال. ولی، به دلیل نوع ارزانی که تولید خودکاری جهت کاتالیست باشند، شایان ذکر است که معمولاً نسبت تلفیق این دسته از فلزات از 0.15 درصد و زیر تا 0.05 درصد مورد توجه قرار گرفته است. همانطور که در جدول 3 مشاهده می‌شود استفاده از فلزات و سطح، در سالهای اخیری که مورد استفاده است، در این گروه از فلزات کاداتن آلی بالدهی و گاکرده از دست گرفته است. مستحکم‌کردن گروه‌های الکترونی و ستاتری 2 الفزي در مورد به‌پایه‌ی بکی‌چرگی از مواردی است که در هر مقاله مورد بررسی قرار گرفت. ارتباط با فرآیند اکسید کاتالیزی است هدف و ترکیبات آلی فلز به ویژه بر روی کربن فلز تولید شده از مواد ماده نشان‌دهنده، و بی‌پروش نتایج اکتیو جرگزندگی در این کشور گرفته شده است. به تحقیقات اندکی جرگزندگی شده در تحقیقات انجام گرفته شده تا مواردی که در حال تحقیق آزمایش می‌باشند. به‌طور کلی، وجود گروه‌های ماتریک دووی ساخت کاتالیست و رو به روی نشان‌دهنده فلز ب روز پایه نشان‌دهنده فلز بر روی پایه اکسیدی فلزی می‌تواند در افرادی کاتالیزی طراحی از حذف در کاستیا که از هوا، محیط مایل باشد (6) در سالهای اخیر نیز پژوهشگران بر روی ناحیه‌ی مختلف فلزی بر روی باه‌های گوناگون به ویژه آلیومین می‌توانند مطالعاتی در سال 2010-2011 انجام گیرند و همکاری بین مانند دو ورود فلزی وسطه و نجات را به صورت هم‌رمان در پادا آلیومین برای حذف نیکل به‌طور محدود قرار داده. با قرار دادن دو فلز نیکل و پلاستیک به صورت هم‌رمان بر روی آلیومین با استفاده از روش تلفیق مشاهده شد که میزان حذف

1. Noble Metal
2. Transition Metal
3. Bimetallic
4. Trimetallic
5. Okumura
6. Lonergan

3- فلز مورد استفاده برای ساخت کاتالیست و رو به روی نشان‌دهنده فلز بر روی پایه
1- فلز مورد استفاده برای ساخت کاتالیست عموماً فلزات الکسیدی فلز برای جداکننده فلزات آلی فلز مورد استفاده قرار می‌گیرد (13) و در دسته‌هایی از فلزات باکتری‌ی و Fe، Ni، Cu، Mn، Pt، Pd، Au، Rh، Fe، Ni، Cu، Co، Mn، Pt، Pd، Au، Rh، Pd، Au، Rh

1. نشریه مهندسی شیمی ایران، سال دوازدهم، شماره شصت و هفتم (1392)
3. Oven
4. Calcination
5. Reduced
6. Deposition-Precipitation (DP)

جلد 5 - کاتالیست‌های خالصه برای جنگ ضد درمان

<table>
<thead>
<tr>
<th>مجموعه</th>
<th>ماده حذف‌شونده</th>
<th>پایه</th>
<th>فلزی</th>
<th>گروه‌های فلزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>(پنزن-پنیان) (Al2O3)</td>
<td>Al2O3</td>
<td>(Ni-Pt)</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>پنیانای (Ni-Pt)</td>
<td>NiAl</td>
<td>(Co, Ni)-Pt</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>سیلیکا هگزان</td>
<td>Al2O3</td>
<td>(Ni-Pt)</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>استونلون</td>
<td>(Y-Zeolite)</td>
<td>Ni-Pt)</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>هیدروژن</td>
<td>SiO2</td>
<td>(Ru-Ag)</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>-----</td>
<td>SiO2</td>
<td>(Ru-Cu)</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>مونوکسید کربن</td>
<td>TiO2</td>
<td>(Au-Ag)</td>
<td></td>
</tr>
</tbody>
</table>

همانطور که از جدول (5) مشخص است در دو هفته کمتر کتالیست‌های جنگ ضد درمان آلوسیتی گروهی فلزی بر روی پایه مخصوصاً کربن فعال مطالعه گردیده‌است. گرفته‌اش است.

2-1-2 چهارهای نشانندن فلز بر روی پایه:

در این بخش درمان‌های کاتالیزور (فلزات) بر روی پایه، مورد مطالعه قرار گرفت. اتصال در روش‌های آزمایشگاهی برای ساخت کاتالیست‌های اکسبس تکیه بر فلز‌آرا. از روش تلقیح ساخت به استفاده می‌رود. بر اساس بررسی‌های انجام شده، نتیجه راهکارهای پنیانای فلز آرا بر روی پایه کار رفت. این روش حفظ بوده است. در صورتی که سایر رویه‌های نشانندن با به کار بردن یکعامل رشی دیگر، بهره‌گرفته شود. در زیر به توضیح دو روش ذکر شده پرداخته خواهد شد.

1. Impregnation
2. Deposition-Precipitation
فرایند به‌صورت کامل انجام شد، موتر باشد. پایه گرنبی قاده است. این حذف دما و نسبت به دیگر پایه‌ها مانند آلومین کاهش دهده ۲۲-۲۳، به عنوان مثال در شکل‌های (۲) و (۳) می‌توان اثر ماده آن فراز، نوع پایه و پیش آماده‌سازی کاتالیست بر روی دما را مشاهده کرد.

شکل ۲-اثر نوع پایه و پیش آماده‌سازی کاتالیست بر اکسایش بنزن در دماهای مختلف

در فراورده اکسایش کاتالیستی شرایط عمیقات متعددی از قبیل دما، غلظت ولیم، فشار و زمان مورد توجه است. که از میان آن‌ها در مطالعات انجام شده، مشاهده شد دما و غلظت ولیم اولیه این‌ها بیشتر مورد بررسی قرار گرفته‌اند. در این بخش به صورت مختصر تأثیر این عوامل مورد بررسی قرار گرفته است.

شکل ۳-میزان اکسایش ترکیبات آلی فراز با استفاده از کاتالیست (Pt/AC۸۰۰) در دماهای مختلف

میان دو روش توزیع داده شده روش DP به صورت توزیع مناسب و اندازه ذرات گوشه یک چکار بر روی پایه می‌تواند کاتالیستی با ساختار نانو تولید کند. در صورتی که در روش توزیع داده کل گوشه ذرات فاز بر روی پایه و توزیع نامطلوب، فاز درای فاز شات، ذرات برگرده بر روی پایه است. به علاوه در زمینه حفظ ترکیبات آلی فزار از هوا تا کنون کاتالیست‌ها ساخته‌شده از روش توزیع، طراحی و ساخته‌شده که به کار گیری روش DP بر روی پایه کریزی خود می‌تواند یک پژوهش جدید برای مقایسه با تحولات انجام شده با روش توزیع، باشد. (۲۰) در ضمن باید به این نکته توجه شود که در روش توزیع، استفاده از کریز یک تهیه شده با به فعال سازی شیمیایی بسیار مؤثر است به گونه‌ای که بر اساس تحقیقات انجام شده وجود گروه‌های فعالی می‌تواند در کارایی کاتالیست اثر مثبت و افزایش باشد. در حالتی که در روش DP وجود این گروه‌ها را ممکن نمی‌باشد و این تکنیک را می‌توان به راحتی با کریز فعال ساخته شده بیشتر در مورد قرار گرفته یک مورد اکسایش داد و کاتالیست مناسبی با توزیع مطلوب و اندازه ذرات فاز در حد نانو تهیه و طراحی کرده. (۲۱)
در شکل ۲ برای حدف بنزین از چهار کاتالیست که سه عدد با پایه کربنی و یکی با پایه آلومینیم مورد استفاده قرار گرفته‌اند.
پیش از آماده‌سازی کاتالیست‌ها با پایه کربنی توسط گاز نیتروژن و اکسیژن در دماهای ۴۰۰ و ۶۰۰ درجه سیلسیوس (AC800, AC400) شده و تا کاهش صدا برای مصرف گاز نیتروژن از آن با اسید هیدروفلوئوریک (HF) تهیه شده است.

مشاهده می‌شود در مصرف ماده اولیه کاهش در کدام کاتالیست مورد استفاده قرار گرفته است.

شکل ۳- تغییرات غلظت اولیه تولوئن و درصد تبدیل اکسیشان (Cu/AC) در دمای ۲۵۰ درجه سیلسیوس [۲۵]

شکل ۲- تغییرات غلظت اولیه تولوئن و درصد تبدیل اکسیشان (Ni/AC) در دمای ۳۰۰ درجه سیلسیوس با زمان و غلظت ورودی به سیستم [۲۳]

۵- نتیجه‌گیری
با توجه به بررسی‌های انجام گرفته، ساخت کاتالیست مناسب جهت حذف آلاینده‌های آلی با استفاده از پایه‌های کربنی و غیرکربنی مورد نیاز قرار گرفته است. ولی بر اساس دلایل گوناگون در دمای زمانی که تولید شده می‌باشد، به دنبال کاهش در کدام کاتالیست ماید.

نتایج مشابه به عامل جوامع در هنگ زیست‌پزشکی ایمن می‌باشد.

کلر تولوئن غلظت اولیه آلاینده در گاز ورودی کاهش می‌باشد.

