چکیده
در یک سرعت حرارتی هیدروکربن‌ها، معمولاً کربن (کک) بر روی دیوپتیاهی راکتور با در فاز گازی تشکیل می‌شود. تشکیل کک معمولاً یک فرآیند غیرمنطقی و ناخواسته می‌باشد. از این رو، معمولاً از ترکیبات گازدار، در مقایسه با اینکه به منظور جلوگیری از تشکیل طبیعی کک، و تولید موتورسیکترین استفاده می‌شود. مهم‌ترین مکانیسم تشکیل کک اولیه در شکست حرارتی H2S هیدروکربن‌ها، مکانیسم کاتالیزه‌ای کک می‌باشد. در این مقاله مکانیسم کاتالیزه‌ای تشکیل کک در حضور H2S در شکست حرارتی اتان مورد بررسی قرار گرفته است. برای تعیین میزان انحلال ترکیبات کک از طریق مکانیسم‌های پیشنهادی بدست آمده است. ضرایب سرعت موجود در مدارها با استفاده از روش پیشنهادی ناحیه (مارکوارت-لونبرگ) تعیین شده است. از مجموع معمولات انحرافات ۱ به داده‌ها آزمایشگاهی و مدل به عنوان تابع هدف استفاده شده و به حداقل مقدار خروجی رسیده است. در خرابکاری خروجی آزمایشگاهی و مدل مقایسه شده و یکی از مدارها با دقت بهتری با نتایج آزمایشگاهی منطبق شده است.

کلمات کلیدی: شکست حرارتی، مکانیسم کک کاتالیزه‌ای، ضرایب سرعت، مجموع معمولات انحرافات

مقدمه
در فرآیند شکست حرارتی به منظور تولید تکیه اولیه مورد نیاز در پتروشیمی مانند انیلین و پروپیلن، جریان سیالی شامل یک هیدروکربن اصلی اغلب اتان و پروپیلن، یا از عناصر اصلی از هیدروکربن‌ها به داخل کره شکست حرارتی وارد می‌شود. در این فرآیندها کک توسط یک سری واکنش‌های جانی تاخوشه، به شکل کربن بر روی دیوپتیاهی راکتور تشکیل می‌شود. تشکیل کک در شکست حرارتی هیدروکربن‌ها، انتقال حرارت از کوره به گاز فرآیندی را کاهش می‌دهد و باعث تبدیل افت فشار بر روی کویل

1. The Sum of Squares of the Deviations
3. Filamentous
1. Physisorption
2. Chemisorption
3. Layer Coverage
جدول 1- طبقه بنی فلزات کوتاکون بر اساس جذب شیمیایی کازها\18\]

<table>
<thead>
<tr>
<th>O₂</th>
<th>C₂H₂</th>
<th>C₂H₄</th>
<th>CO</th>
<th>H₂</th>
<th>CO₂</th>
<th>N₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

فلزات

<table>
<thead>
<tr>
<th>+</th>
<th>Ca, Sr, Ba, Ti, Z, Hf, V, Nb, Ta, Cr, Mo, W, Fe, Re</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Ni, Co, Rh, Pd, Pt</td>
</tr>
<tr>
<td>+</td>
<td>Al, Mn, Cu, Au, K</td>
</tr>
<tr>
<td>+</td>
<td>Mg, Ag, Zn, Cd, In, Si, Ge, Sn, Pb, As, Sb, Bi, Se, Te</td>
</tr>
</tbody>
</table>

گروه

<table>
<thead>
<tr>
<th>A</th>
<th>B₁</th>
<th>B₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

نقطه‌ای که در این کار برای مدل‌سازی تشکیل کک کاتاپلژک در نظر گرفته شده است، نظریه کالسپیک لانک مناسب است. نظریه لانک‌ک مایر بر اساس فرض‌ها زیر نشانه شده است:
1) یکجاخست و یکسان فرض کردن تواحی جذب سطحی
2) به وجود آمدن نمایی کلیات سطحی
3) عدم واقعیت و فعل و انفعال بین مولکول‌های جذب شده این فرض‌ها، مناسب‌ترین فرض‌ها برای توصیف جذب شیمیایی و جذب فیزیکی سطحی کمی، جایی که نمایی کلیات سطحی تشکیل می‌شود، می‌باشد.\18\]

5- مکانیسم‌های پیشنهادی

5-1 برسی مکانیسم اول

به منظور توصیف مکانیسم تشکیل کک از نظریه لانک‌ک مایر کمک گرفته شد که در این نظریه محکم پدیده ای انسداد که می‌توان قوانین اتریجوم را به صورت گام‌های جداگانه بررسی کرده‌اند. این مدل تجربی ارائه شده در زیر بر اساس نظریات و نظارت‌های نظری لانک‌ک مایر، با توجه به است.

1. Langmuir
اما مکانیسمی که برای جذب H_2S به صورت زیر است.

\[H_2S + L \xrightarrow{K_4} H_2SL \]

\[H_2SL \xrightarrow{K_5} SL + H_2 \]

\[SL \xrightarrow{1/2} S_2 + L \]

که در این واکنش‌ها، گوگرد تشکیل شده بر روی سطح، سطح در این واکنش‌ها به روش سطح فلزی و سطح گوگرد جدا شده و این واکنش‌ها پیشنهادی را که کرکتی‌ساز گوگرد دار می‌نماید که جذب سطح شده و گوگرد عنصری تولید کننده آن (2). برنامه‌ای در مکانیسم حاضر نیز فرض شده است که سولفیدهای سطحی مستقیماً تولید گوگرد عنصری می‌نماید.

اکنون می‌توان واکنش‌های اصلی در فرآیند تشکیل کک از شکست حرارتی اتان در حضور H_2S را استخراج کرد.

\[C_2H_6 \rightarrow 2C + 3H_2 \]

\[H_2S \rightarrow \frac{1}{2}S_2 + H_2 \]

5-1 تعبیر معادلات سرعت برای مکانیسم اول بر طبق قانون اثر جرم سرعت واکنش جذب برای واکنش (1) به صورت زیر نوشته می‌شود:

\[r_{sl} = K_1C_2H_6CL \]

\[r_{sr} = K_3C_2H_6CCL - K_4C_2H_6CL \]

\[(sr)sl = K_4C_2H_6SL \]

اما سرعت مواد براین‌ها:

\[r_{sl} = K_1C_2H_6CL \]

\[r_{sr} = K_3C_2H_6CCL - K_4C_2H_6CL \]

\[(sr)sl = K_4C_2H_6SL \]
اين روش یا یک بک تعداد هدف تعیین کرده که برای پذیرش در این کار می‌تواند کردن تعداد هدف مناسب بوده است. تعداد هدف بالا در این کار همچنین مجموع مطالعات اثرات این داده‌ها می‌تواند از شده است. که به شکل زیر تعریف می‌شود:

\[f = \sum (r_{exp} - r_{cal})^2 \]

که در این رابطه \(r_{exp} \) سرعت از ازامیگکیا و \(r_{cal} \) سرعت محاسبه شده می‌باشد.

داده‌ها از ازامیگکیا از مقاله مربوطه استخراج شده‌اند. بنابراین معمولاً که قبلاً سرعت که برای سینتیک کل اول به صورت زیر به‌دست می‌آمد:

\[r_{cl} = \frac{-0.087C^2}{C_{H_2} + 0.0933C_{C_2}H_6} \]

که در این رابطه \(r_{cl} \) بر حسب (grcoke/min) (گرم کک بر دقیقه) می‌باشد.

حال می‌توانیم مقایسه‌ای بین نمودارهای سرعت گاز کاتالیزور ازامیگکیا و مدل و همچنین نمودارهای درصد کربن کاتالیزور تشكل شده ازامیگکیا و مدل داشتی بایدیم.

شکل‌های (2) و (3) به ترتیب سرعت ویژگی بین نمودارهای سرعت گاز کاتالیزور ازامیگکیا و مدل و همچنین نمودارهای درصد کربن کاتالیزور تشكل شده ازامیگکیا و مدل را برای سینتیک دیش‌های اول نشان می‌دهند.

همان‌طور که از شکل‌های (2) و (3) پیداست، مقادیر مدل و غلظت‌های 25 ppm H₂S تا 100 ppm H₂S نشان می‌دهد که لهجه‌ای خوبی را بر می‌آورد. ازامیگکیا نشان می‌دهد که به‌طور خوبی غلظت‌های 100 ppm H₂S نشان می‌دهد که به‌طور خوبی هم‌ویژگی و غلظت‌های H₂S سبب شده است. نتایج تحقیق که بوده که به‌طور خوبی توجه کند. در سینتیک اول مقدار مجموعی تفاوت حداکثر مربوط به سرعت‌های ازامیگکیا و مدل که هدف می‌شود می‌باشد.

\[r_{CL} = \frac{K_{1}C_{C_2}H_6}{(1 + K_{2}C_{C_2}H_6)} \]

\[r_{CS} = \frac{K_{3}C_{C_2}H_6}{(1 + K_{4}C_{C_2}H_6)} + \frac{K_{5}C_{C_2}H_6}{(1 + K_{6}C_{C_2}H_6)} \]

در نتیجه مدل سایت‌های فعال که جدید بر روی آنها صورت بی‌پایان، تعریف می‌شود.

\[C_{L} = C_{L} + C_{C_2}H_6 + C_{C_2}H_6 + C_{C_2}H_6 \]

\[C_{L} = C_{L} + C_{C_2}H_6 + C_{C_2}H_6 + C_{C_2}H_6 \]

\[C_{L} = C_{L} + C_{C_2}H_6 + C_{C_2}H_6 + C_{C_2}H_6 \]

\[C_{L} = C_{L} + C_{C_2}H_6 + C_{C_2}H_6 + C_{C_2}H_6 \]
شکل ۲- مقایسه بین نمودارهای سرعت کک کاتالیزکر آزمایشگاهی و مدل پیشنهادی اول بر حسب غلظت‌های مختلفی از H_2S در شکست حرارتی اتیلن

شکل ۳- مقایسه بین نمودارهای درصد کربن کاتالیزکر تشکیل شدیده آزمایشگاهی و مدل پیشنهادی اول بر حسب غلظت‌های مختلفی از H_2S در شکست حرارتی اتیلن
در نتیجه در این حالت غلظت C_{CL} به کل سایت‌های فعال اضافه می‌شود:

\[
C_l = C_L + C_{C_2H_4L} + C_{CL} + C_{H_2SL} + C_{SL}
\] \hspace{1cm} (37)

\[
C_l + \frac{K_1C_{C_2H_4L}}{K_2} + \frac{K_1C_{C_2H_4L}C_{CL}}{K_3} + \frac{K_2C_{H_2SL}C_{CL}}{K_4} + \frac{K_3K_4C_{H_2SL}}{K_5}\]

با جایگذاری C_l از رابطه (37) و تعیین ضرایب با استفاده از روش بهینه‌سازی، سرعت کک برای مکانیسم دوم به صورت رابطه زیر در می‌آید:

\[
r_{c2} = \frac{-0.1212C_{C_2H_4L}^2 + 1/8976C_{C_2H_6}}{(1/7997 + 0/7394C_{C_2H_6} + 0/0091C_{H_2S})}
\] \hspace{1cm} (38)

که در این رابطه r_{c2} بر حسب (g coke/min) می‌باشد.

شکل‌های (4) و (5) به ترتیب مزان همیوشانی بین نمودارهای سرعت کک کانالیزکر آزمایشگاهی و مدل و همچنین نمودارهای درصد کربن کانالیزکر تشکیل شده آزمایشگاهی و مدل را در سیستم پیشنهادی دوم نشان می‌دهد.

در این حالت سرعت کام اضافه شده به طور کلی واکنش تغییر می‌کند و واکنش دفع سطحی H_2S در اصلی این مکانیسم، همانند واکنش‌های (3)، (4) و (7) باشند.

\[
C_2H_6 + LC_2H_4L \rightarrow K_1
\] \hspace{1cm} (39)

\[
C_2H_6L + L2CL + 3H_2 \rightarrow K_2
\] \hspace{1cm} (40)

\[
CL + C + K_3
\] \hspace{1cm} (41)

در این واکنش‌ها نیز CL و C کربن بر روی سطح، K_1 در اثر واکنش دفع می‌باشد. مکانیسم واکنش برای جذب H_2S همانند واکنش‌های (3)، (4) و (5) باشد.

\[
r_{d2} = K_3C_{CL}
\] \hspace{1cm} (42)

شکل 3- مقایسه بین نمودارهای سرعت کک کانالیزکر آزمایشگاهی و مدل پیشنهادی، دوم بر حسب غلظت H_2S در شکست حرارتی اتان (1391).
ENGINEERING JOURNAL
– Vol. 11 - No. 64 (2013)

حنی طری که از شکل های (4) و (5) پایدار، مقایسه مدل تقریباً به همیوشگان تیار خوبی با مقایسه آزمایشگاهی در غلظتهای 25 تا 150 ppm H2S در سیستم دوم مقدار مجموع تخلیه حلال مربوط به نهایی آزمایشگاهی و مدل که به ترکیب سه میکس می‌آید تا 200/0 به‌دست آمد. مقادیر بسیار کوتاه و مناسب تری نسبت به پیش‌بینی مجموع تخلیه حلال مربوط سیستم بیش‌تری اول می‌باشد.

6- نتایج گیری

با توجه به اهمیت تشکیل کک در راکتورهای شکست حرارتی، ارائه مکانیسم برای توجیه این پدیده و مدل معنیبرای تیار سرعت تشکیل کک از اهمیت بسیار برخوردار می‌باشد.

به طور کلی به منظور بررسی سیستم مشاهده شده در سیستم M. سرعت تشکیل کک با میزان ماده گردیده گریزیده به این بستگی غلظتها H2S تغییر می‌کند. در این تحقیق، مقدار غلظت H2S مدل مقایسه و روند یک‌تایی از غلظت این ماده به‌دست آمده، بای‌الاین مدل ارائه شده برای سرعت تشکیل کک تابعی ناخود با ثبات و بنا بر تغییر غلظت به‌دست می‌آید. لازم به ذکر است که در نظر گرفت به کود خود سطح و فشار بسیار تاکید که در مکانیسم بیش‌تری دوم، در نظر می‌گیریم یک دوم. مقدار مربوط به سرعت معبرانه، سازگاری بهتری بین مقایسه آزمایشگاهی و مدل نشان داد. مقدار مربوط به انتقالات در سیستم کل 12/0/0 در سیستم دوم 12/0/0 به دست آمد.

