راه‌های فلزی- آلی (MOF) و کووالانسی- آلی (COF) بر جذب متان، هیدروژن و دی اکسید کربن

مهدی نیک‌نام شاهی‌کر، اکبر شاموند. علی حفظی. علی احمدپور

مشهد، دانشگاه فردوسی مشهد، دانشکده مهندسی، گروه مهندسی شیمی

پیام تگار: ir ahmadpour@um.ac.ir

چکیده

ذخیره‌سازی گازهای من karakter به عنوان سوخت‌های بکار در بخش حمل و نقل و جداسازی دی اکسید کربن به جهت تاثیرگذاری منفی بر محیط زیست به عنوان یکی از مهم‌ترین منابع آلودگی‌های غیربومی و ذخیره‌سازی انرژی گازهای در انواع مختلف از جاذبه‌های نوزهپور و MOF و COF در سال‌های اخیر مورد پژوهش و سپرگیری گردیده است. این نوع از جاذبه‌ها علاوه بر دارا بودن پیشرفت از پیژشی‌های مطلوب جاذبه‌های نوزهپور (مانند کردن‌های فعال) باعث یافته که تاکنون ساختن شده‌اند. این اکسید کربن نیز به عنوان انواع COF و MOF جاذب‌ها در داخل کشور مورد بررسی قرار گرفته‌اند.

کلمات کلیدی: جاذبه‌های نوزهپور، COF و MOF، جذب سطحی، متان، هیدروژن، دی اکسید کربن

1. مقدمه

جاکس‌زایی پیوسته از قراردادهای جداسازی در صنایع نفت، گاز و پتروشیمی به‌کمک انرژی‌های جدید می‌تواند از جاذب‌ها در برجویی به صورت ثابت قرار داده می‌شود که جاذب‌ها در برجویی به صورت ثبت

2. Fixed-bed Adsorbers
3. Peak Shaving
مهال

1. Adsorbent or Sorbent
2. Liquefied Petroleum Gas (LPG)
3. Metal-Organic Framework (MOF)
4. Covalent-Organic Framework (COF)
5. Metal-Organic Polymers (MOP)
6. Supramolecular Structures
7. Cambridge Structure Database (CSD)

جدول 1- برخی از کاربردهای چهار نوع جابجایی صنعتی

<table>
<thead>
<tr>
<th>کاربردهای صنعتی</th>
<th>جابجایی</th>
</tr>
</thead>
<tbody>
<tr>
<td>جابجایی میکروژئی (MOF)</td>
<td>مرکز گاز</td>
</tr>
<tr>
<td>جابجایی نیترژن از اکسیژن</td>
<td>مرکز گاز</td>
</tr>
<tr>
<td>جابجایی آب از گاز</td>
<td>مرکز گاز</td>
</tr>
<tr>
<td>جابجایی اکسیژن از ترکیبات آلی</td>
<td>مرکز گاز</td>
</tr>
<tr>
<td>ژلاتین</td>
<td>لیمیت</td>
</tr>
<tr>
<td>لیمیت</td>
<td>لیمیت</td>
</tr>
</tbody>
</table>

چند جابجایی چهار نوع جابجایی صنعتی مورد استفاده در شرکت Basolite™ Sigma-Aldrich قرار گرفته است. برخی از این جابجایی ها ممکن است از گاز را نشان دهد.

نمره های چهار نوع جابجایی میکروژئی (MOF) بر اساس یک گیپ مشابه است. شکل (1) نشان می‌دهد.

1. Adsorbent or Sorbent
2. Liquefied Petroleum Gas (LPG)
3. Metal-Organic Framework
4. Covalent-Organic Framework
5. Metal-Organic Polymers
6. Supramolecular Structures
7. Cambridge Structure Database (CSD)
جدول 2- برخی از خواص MOF های تولیدی توسط شرکت Sigma-Aldrich

<table>
<thead>
<tr>
<th>اندازه روزنه‌ها (µm)</th>
<th>چگالی نوده (g/cm³)</th>
<th>سطح آزاد (m²/g)</th>
<th>وزن مولکولی</th>
<th>فرمول شیمیایی</th>
<th>نام تجاری</th>
</tr>
</thead>
<tbody>
<tr>
<td>31/55</td>
<td>0/4</td>
<td>1100-1500</td>
<td>208/10</td>
<td>C₆H₅AlO₃</td>
<td>Basolite™A100</td>
</tr>
<tr>
<td>15/96</td>
<td>0/35</td>
<td>1500-2100</td>
<td>641/87</td>
<td>C₁₀H₆Cu₄O₁₂</td>
<td>Basolite™C300</td>
</tr>
<tr>
<td>4/9</td>
<td>0/35</td>
<td>1300-1800</td>
<td>299/60</td>
<td>C₃H₉N₃Zn</td>
<td>Basolite™ZI200</td>
</tr>
<tr>
<td></td>
<td>0/16-0/14</td>
<td>1300-1600</td>
<td>252/96</td>
<td>C₃H₃FeO₆</td>
<td>Basolite™F300</td>
</tr>
</tbody>
</table>

جدول 3- برخی از مزایای جاذب‌های نوع MOF در مقایسه با چهار جانب متدول موجود در صنعت [10]

<table>
<thead>
<tr>
<th>جاذب صنعتی</th>
<th>در مقایسه با جاذب صنعتی MOF مزیت جاذب صنعتی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zolotite</td>
<td>10-برابر بودن سطح آزاد، ظرفیت جذب بالاتر، عدم وجود فضاهای نیازی قبل دسترس، عدم نیاز به افزایش پالس دفع</td>
</tr>
<tr>
<td>Silica</td>
<td>ضریب جذب و ظرفیت جذب بالاتر</td>
</tr>
<tr>
<td>Aluminum</td>
<td>البومین؛نیاز به افزایش پالس دفعیرایی مسیر بین فلزات در مواد مهندسی آب</td>
</tr>
<tr>
<td>Cool Fluid</td>
<td>استحکام در برای دماهای بالاتر، امکان فعالیت سازنده دما و افزایش سطح آزاد بالاتر</td>
</tr>
</tbody>
</table>

5. Condensation Reaction
6. BDBA
7. HHTP
2- کاربردهای جذب

همان‌گونه که در بخش‌های قبلی اشاره گردید، جاذبهای MOF و COF به علت دارا بودن برخی ویژگی‌های خاص، قابلیتی کاربرد در انواع فرآیندهایی که به نوعی با ماده‌های مختلف ریز ساختار دار و کار دارند، دارا می‌باشند. از این رو این نوع از مواد در سال‌های اخیر جهت ورود به سیستم‌های اندازه‌گیری از فرآیندهای مورد امکانیده و بررسی قرار گرفته‌اند. بیشترین نقش‌گری اینها در دانش و پژوهش از فرآیندهای مصنوعی تا چند سال ایندیکس در ذهن نیست. با توجه به سطح اردبیلی و همچنین چگالی پایه اغلب جاذبهای خاکاسه و MOF این نوعین از جاذبهای مواد بکر یکی از بهترین جاذبهای جهت ذخیره‌سازی گازهای گوناگون مطرح می‌باشد. در این میان، گازهای نیتروژن و هیدروژن به دلیل برخی از مرحله‌های دارایی اکمک از استفاده در بخش حمل و نقل و ارائه سوخت به دست دهنده معمولاً برای خود ویژگی‌های خاص، گاز دی اسکید کردن به خاطر تخریب و ضرر در حفظ آن از محدودیت زیست، بیشتر از سایر گازهای مردآمیزی قرار گرفته‌اند. لازم به ذکر اینکه علاوه بر سطح چهارم، توزیع بر اندامه ساختن نیز در منابع جذب مطالعه یکی از اینجایی به ساختار به صورت منظم می‌باشد. لذا اغلب جاذبهای یکی از این دسته‌تنها دارای این اندازه مشخص از حفاظت هستند. در اینجا، طبقیت جذب انواع MOF و COF استفاده شده جهت ذخیره‌سازی گازهای مکور می‌شود.

لازم به ذکر این است که اغلب جاذبهای مکور هر یک از جاذبه‌ها وابسته به شرایط می‌باشد، ممکن است یک نوع جاذب‌رخ خاص تحت شرایط مختلف سنتس، دارای طبقیت جذب متغیر باشد.

شکل 3- (الف) تصویر SEM، (ب) ساختار مولکولی (COF-5) [14] (پ) مواد بر کاربردهای ذخیره‌سازی گازها، می‌توان به موارد زیر اشاره نمود.

1. جداسازی انتخابی گاز‌ها
2. خالص‌سازی گاز‌ها
3. تشخیص مولکولی
4. کاتالیزگر
5. جاذبهای مغناطیسی

1. Molecular Sensing
2. Drug Storage and Delivery
در سال 2008 توسط گروه تحقیقاتی زو معرفی گردید (19) این نوع از MOF‌ها که به شبکه‌های هم‌امکان متفاوت معروف می‌باشد به اختصار PCN نامیده می‌شود. میزان چربی منابع گزارش شده برای جذب مکروکریستاک (25 و 24) برابر (V/V) مقدار 2300 (حجم جذب شبکه) در شرایط استاندارد به حجم جذب می‌باشد.

که این مقادیر در شرایط دمایی و فشاری فوق‌الذکر، تقییاً درصد بیش از میزان مطلوب مورد نظر سازمان انرژی آمریکاً (EERE) یعنی (V/V) 1246 (با 35 درصد شرکت) است (19). هر چند گروهی از محققین، میزان بالای جذب منابع توسط گروه PCN را به عنوان دو نوع سطحی سطحی فعال خاص، پیک مربوط به بینهایت از اشباع شده و دیگر مربوط به حفرات تقویت شده پوششی نسبی و نادرالس، 3 می‌دانند (20). اما گروهی نیز بر این باورند که ظرفیت گزارش شده در مورد جذب عملکرد (PCN-14) مقادیرهای افزایشی است و ویژا در اثر اکتشافات در محاسبه چگالی جذب حداکثر است (21).

از دیگر جذب جذب ان گروه (PCN-11) می‌باشد که دارای ظرفیت جذب قابل قبولی است. میزان چربی منابع گزارش شده توسط این جذب در مقدار 25 (با 24) برابر (V/V) لازم یافته بر این دست که اساسی دهده ان مورد استفاده در (PCN-11) و مشتاقی از دی کریپتسلیک و فلز به کار رفته در هر دو آنها به جنس (کنترلی) می‌باشد.

در حال حاضر لیست مصرف می‌باشد که MOF-5 (dhtp) جذب های دگرگونی از خانواده MOF جذاب است که در سال 2009 ارائه گردیدند. در این جذاب MOF ها یک دسته فاز (یک مورد در ساختار IRMOF) به گروه میانه میزان چربی می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF ها مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچنین دیگر جذاب MOF Hا مشابه شده است که میزان اثر این گروه می‌تواند به دو سطحی (22) تخمین زده شود. نوع دگرگونی از جذاب با همچن

4. Isoreticular Metal-Organic Framework
جدول ۳- میزان جذب متان در سایر جانبه‌های دو کروه فورمول‌های MOF و COF

<table>
<thead>
<tr>
<th>نام جانب</th>
<th>میزان جذب متان (g/L) در فشار ۳۵ بر و دما ۲۹۸ کلوین</th>
<th>میزان جذب متان (g/L) در فشار ۳۵ بر و دما ۲۹۸ کلوین</th>
<th>میزان جذب متان (g/L) در فشار ۳۵ بر و دما ۲۹۸ کلوین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cu-MOF)</td>
<td>-</td>
<td>-</td>
<td>۱۴۰</td>
</tr>
<tr>
<td>CuSiF(4,4’-bipy)</td>
<td>-</td>
<td>-</td>
<td>HKUST-1 Cu(btc)_2</td>
</tr>
<tr>
<td>Zn(bdc)_2 dabco</td>
<td>-</td>
<td>-</td>
<td>Zn(bdc)_2 dabco</td>
</tr>
<tr>
<td>(MeCO,3H.O)</td>
<td>-</td>
<td>-</td>
<td>۹۲</td>
</tr>
<tr>
<td>۰.5EtOH</td>
<td>-</td>
<td>-</td>
<td>۱۰۷</td>
</tr>
<tr>
<td>2MeCO</td>
<td>-</td>
<td>-</td>
<td>۱۰۷</td>
</tr>
<tr>
<td>[Zn₂(μ-O)(L)_3(dmff)_4]DMF-3CH₃OH-2H₂O</td>
<td>-</td>
<td>-</td>
<td>[Zn₂(μ-O)(L)_3(dmff)_4]DMF-3CH₃OH-2H₂O</td>
</tr>
<tr>
<td>[Zn₂(μ-O)(L)_3(dmff)_4]DMF-3CH₃OH-2H₂O</td>
<td>-</td>
<td>-</td>
<td>MIL-53 (Al)</td>
</tr>
<tr>
<td>MIL-53 (Cr)</td>
<td>-</td>
<td>-</td>
<td>۱۵۵</td>
</tr>
<tr>
<td>Zn₄O(FMA)_3</td>
<td>-</td>
<td>-</td>
<td>۱۶۵</td>
</tr>
<tr>
<td>MIL-83</td>
<td>-</td>
<td>-</td>
<td>۱۵۵</td>
</tr>
<tr>
<td>(ZIF-8)</td>
<td>-</td>
<td>-</td>
<td>۸۲۱</td>
</tr>
<tr>
<td>۸۶</td>
<td>-</td>
<td>-</td>
<td>Zn₂O(FMA)_3</td>
</tr>
</tbody>
</table>

۲-۲ جذب هیدروژن

هیدروژن یکی از گاز‌های مهمی است که به خاطر توانایی استفاده از آن در بخش جامد و تولید بیوتانول سوختی پاک، بعد از متان، جهت ذخیره‌سازی در انواع جانب‌ها به‌عنوان یک مورد نوشه می‌باشد. میزان مطلوب ذخیره‌سازی مدل نظری مناسب ۲۰۰۰ متنزه شده است. ۲۰۱۰ درصد (۸۱ g/L) و نیز صورت گرفته برای ذخیره‌سازی گاز هیدروژن در دمای بسیار پایین، بینی ۷۷ کلوین، در حالی که در حالت طبیعی به میزان مطلوب ذخیره‌سازی در دماهای بالاتر (حدود دماهای دهی) توسط موجود شده است. ۳۰۰۰ میلیارد کره‌ای صورت گرفته است. از لحاظ محدود بودن کره‌ای صورت گرفته جهت ذخیره‌سازی متان در جانب‌های گروه MOF و COF، هیدروژن در اغلب جانب‌هایی که دو گروه مورد بررسی و آزمایش قرار گرفته است، به گونه‌ای که تا سال ۲۰۱۸، میزان جذب هیدروژن فقط در می‌باشد [۷۹].

۱. وزن جنبد شونده به وزن جانب

نشریه مهندسی شیمی ایران - سال ۱۳۹۳ - شماره شصت و سوم (۱۳۹۱)
جدول (V) آورده شده است. مندکر می‌گوید که جاذب (11) جزو معدود جاذب‌هایی است که تنزلنده است. یک ترکیب هم‌مان در ذخیره‌سازی دو گاز متان و هیدروژن به هدف سازمان انرژی امریکا به بسیار تازه‌کردن گرد.

نتایج جدیدی از ذخیره‌سازی هم‌مان در می‌باشد که به تازگی سنتز شده MOF (ZnN2) ۱ یک ذخیره‌سازی FIF8 را نام دارد. این نوع جاذب که فلز روی (ZnN2) را تصویب می‌کند در MOF (M2) و (PCN-6) است. شکل (V) نشان می‌دهد که این جاذب را به استفاده زیست‌پزشکی می‌پوشاند.

نمایی از بعدها از این جاذب را نشان می‌دهد.

1. IRMOF

اسید کروتسلیک می‌باشد (۱۴) میزان جذب هیدروژن در (MIL-۵۳(Cr) و MIL-5۳(Al) در دمای ۷۲ کلوین و فشار ۱۰ میلی‌پیوستگی است. به نظر می‌رسد که این جاذب‌های این گروه، به گذرگیری از میزان جذب هیدروژن بهترین عملکرد می‌باشد.

بر خلاف میزان جذب سیلیکا، میزان توزیع جاذب (۱۴) این جاذب‌ها با جذب ۴/۳ درصد وینی هیدروژن نتوانسته است در جذب این ماده مطلوب عمل کند. (البته در فشارهای بالا، بیشترین میزان جذب هیدروژن را نشان دهنده با میزان (PCN-11) می‌باشد. اما باید به جدید بودن این جاذب‌ها از پتانسیل بالایی در خصوص جذب انواع مختلف از گاز‌ها برخوردار می‌باشد. این نتایج می‌تواند در سالهای آتی گزارش‌های بیشتری در مورد این نوع جاذب‌ها ارائه گردد. میزان هیدروژن جذب شده توسط مجموعه‌ای از این جاذب‌ها را می‌توان در جدول (V) مشاهده نمود. همچنین موفقیت دارند (۱۶) میزان جذب هیدروژن در جاذب‌های این گروه در
جدول ۷- میزان حذف هیدروژن در سایر جانبه‌های کروه [۱۸-۲۰]

<table>
<thead>
<tr>
<th>نام مولکول</th>
<th>میزان حذف هیدروژن (٪) در دما 77 درجه سانتی‌گراد</th>
<th>دما (بار)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(COF-1)</td>
<td>71.5</td>
<td>0.1</td>
</tr>
<tr>
<td>(COF-5)</td>
<td>67.4</td>
<td>0.1</td>
</tr>
<tr>
<td>(COF-6)</td>
<td>51.2</td>
<td>0.1</td>
</tr>
<tr>
<td>(COF-8)</td>
<td>63.8</td>
<td>0.1</td>
</tr>
<tr>
<td>(COF-10)</td>
<td>71.5</td>
<td>0.1</td>
</tr>
<tr>
<td>(COF-102)</td>
<td>71.5</td>
<td>0.1</td>
</tr>
<tr>
<td>(COF-103)</td>
<td>71.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

مشابه عملکرد این نوع از جانبه‌ها در جذب هیدروژن در (COF-103) و (COF-102) واکنش‌های به میزان مطلوب ذخیره هیدروژن (مد نظر سازمان انرژی آمریکا) دست یابید.

البته در برخی از مقادیر شیمی‌های مولکولی بازیونی شده است که الیوتین که می‌تواند در کل که ناکارب و بررسی صحت این ادامه انجام شده است [۲۹].

جدول ۸- حذف کیفیت به کروه هیدروژن در جانبه‌های کروه COF [۱۳]

<table>
<thead>
<tr>
<th>نام کروه</th>
<th>دما (بار)</th>
<th>میزان حذف هیدروژن (٪) در دما 77 درجه سانتی‌گراد</th>
</tr>
</thead>
<tbody>
<tr>
<td>COF-1</td>
<td>0.1</td>
<td>71.5</td>
</tr>
<tr>
<td>COF-2</td>
<td>0.1</td>
<td>67.4</td>
</tr>
<tr>
<td>COF-3</td>
<td>0.1</td>
<td>51.2</td>
</tr>
<tr>
<td>COF-4</td>
<td>0.1</td>
<td>63.8</td>
</tr>
<tr>
<td>COF-5</td>
<td>0.1</td>
<td>71.5</td>
</tr>
<tr>
<td>COF-6</td>
<td>0.1</td>
<td>71.5</td>
</tr>
<tr>
<td>COF-7</td>
<td>0.1</td>
<td>71.5</td>
</tr>
<tr>
<td>COF-8</td>
<td>0.1</td>
<td>71.5</td>
</tr>
</tbody>
</table>

ًسترن شده به روش الکترونی نشیمی‌ای.

میزان جذب در حالت اشباع (حداکثر)
نتیجه اینکه هر چند برخی از جذب‌های خانواده MOF و COF، توانسته‌اند به میزان مطلوب ذخیره‌سازی هیدروژن تعبیه شده از سوی سازمان انرژی امریکا تا سال 2010، دستباند اما تا ریسیدن به میزان مطلوب جذب در سال 2015 قابلیت زیادی دارند. بنابراین روش‌هایی مستقل این نوع از جذب‌ها با یا حتی نوع جذب‌های برای ریسیدن به این هدف باشیم بهبود پایین.

2-1.2 اکسید کریم

گازهایی که ای جی‌کی به مهیل‌های آن‌ها تحت فشار دارای قابلیت صورت‌گیری و به‌طور کلی میزان مطلوب است. این جذب‌ها در مقایسه با سایر جذب‌های MOF تغییر می‌یابند. پنجه‌هایی به همراه COF جذب‌های متداول و دیگر اکسید کریم از جذب‌ها مربوط به بی‌پایه کابی و همکاری مشابه اکسید کریم در جذب‌های مبتنی بر مایع نیش از جذب‌ها مورد استفاده در دو نوع COF و MOF مورد استفاده در جذب‌های اکسید کریم را مشاهده کرد.

![شکل 9- تکنامه‌های مربوط به جذب اکسید کریم در جذب‌های COF](COF102.png)

1. Fumarate (FMA)
جدول 9: میزان جذب دی اکسید کربن در سایر جانبه‌های کروه (COF و MOF)

<table>
<thead>
<tr>
<th>نام جذب</th>
<th>(mg/g)</th>
<th>در دمای 298 کلوین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(COF-1)</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td>(COF-5)</td>
<td>0.870</td>
<td></td>
</tr>
<tr>
<td>(COF-6)</td>
<td>0.310</td>
<td></td>
</tr>
<tr>
<td>(COF-8)</td>
<td>0.300</td>
<td></td>
</tr>
<tr>
<td>(COF-10)</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>(COF-102)</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>(COF-103)</td>
<td>1.190</td>
<td></td>
</tr>
<tr>
<td>(MOF-177)</td>
<td>1.490</td>
<td></td>
</tr>
<tr>
<td>(IRMOF-1)</td>
<td>0.470</td>
<td></td>
</tr>
<tr>
<td>(IRMOF-6)</td>
<td>0.870</td>
<td></td>
</tr>
</tbody>
</table>

مطلق آنچه در جدول (9) نشان داده شده است، در میان جانبه‌های COF، COF-102 و IRMOF-1، مقدار عامل جذب کروه در انرژی ۶۰۵ بار، COF-102 و IRMOF-1 می‌باشد.

1. **بحث و نتیجه‌گیری**

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

ملاحظه:
- COF-102 و IRMOF-1، مقدار عامل جذب کروه در انرژی ۶۰۵ بار، COF-102 و IRMOF-1 می‌باشد.
- (COF و MOF)

ملاحظه بررسی‌های جامد، درخت‌کاری، و جامدکاری

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

ملاحظه بررسی‌های جامد، درخت‌کاری، و جامدکاری

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

ملاحظه بررسی‌های جامد، درخت‌کاری، و جامدکاری

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

ملاحظه بررسی‌های جامد، درخت‌کاری، و جامدکاری

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

ملاحظه بررسی‌های جامد، درخت‌کاری، و جامدکاری

با توجه به دریافتی‌های جامد، درخت‌کاری، و جامدکاری، می‌توان پیشنهاد کرد که این الگوهای جامد کروه به وسیله جاسکار و دیگران، ترکیبیان در گروه و جامدکاری دارای اثری بر جذب دی اکسید کربن به‌صورت کوچک می‌باشد.

