شبیه‌سازی شرایط عملیاتی سنتز سبز نانوذرات نقره با استفاده از عصاره برگ آلوورا و مایکروویو و بررسی خواص آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی صنایع غذایی، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند، تبریز، ایران

2 گروه مهندسی شیمی، دانشکده فنی و مهندسی، دانشگاه مراغه، مراغه، ایران

چکیده

روش سنتز سبز جهت تولید نانوذرات با استفاده از عصاره های گیاهی، روشی کارآمد، سریع و کم هزینه می باشد. جهت سنتز نانوذرات نقره از عصاره آبی گیاه آلوورا، با توجه به توانایی احیاکنندگی و پایدارکنندگی مناسب که توسط آنالیز FTIR وجود مواد مختلفی همچون فلاوونوئیدها و اسیداستیک در آن تائید شد، و حرارت دهی تشعشعی مایکرویوو در توان های مختلف 480، 640 و 800 وات استفاده شد. پس از انجام آنالیز UV-Vis و DLS بروی نمونه نانوذرات نقره سنتز شده نتایج نشان داد که غلظت های 38.58، 61.52 و 91.35  ppmو همچنین میانگین اندازه ذرات 94، 74 و 61 نانومتر برای نانو ذرات نقره سنتز شده در توانهای مختلف بدست آمد. با شبیه سازی شرایط عملیاتی سنتز نانوذرات نقره با نرم افزار دینامیک سیالات محاسباتی (CFD) در توان های مختلف (800-480 وات)، به منظور بهینه سازی زمان، انرژی و دمای اعمال شده جهت سنتز نانوذرات نقره با خواص مطلوب، میانگین دمای K 337، توان مناسب اعمال شده 800 وات و زمان فرآیند 175 ثانیه بدست آمد.

کلیدواژه‌ها


 

[1]        Golabiazar, R., Othman, K. I., Khalid, K. M., Maruf, D. H., Aulla, S. M., Yusif, P. A., "Green Synthesis, Characterization, and Investigation Antibacterial Activity of Silver Nanoparticles Using Pistacia atlantica Leaf Extract", Bio Nano Sci., 9,
pp. 323-333, (2019).
 
 
 
 
[2]        Sánchez, G. R., Castilla, C. L., Gómez, N. B., García, A., Marcos, R., Carmona, E. R., "Leaf extract from the endemic plant Peumus boldus as an effective bioproduct for the green synthesis of silver nanoparticles", Mat. Let, 183, pp. 255-260, (2016).
[3]        Khan, M. Z. H., Tareq, F. K., Hossen, M. A., Roki, M. N. A. M., "Green synthesis and characterization of silver nanoparticles using Coriandrum sativum leaf extract", J. Eng. Sci. and Tech., 13, pp. 158-166, (2018).
[4]        Torabfam, M., Jafarizadeh-Malmiri, H.,
"Microwave-enhanced silver nanoparticle synthesis using chitosan biopolymer: optimization of the process conditions and evaluation of their characteristics", Green Process. and Synth., 7,
pp. 530-537, (2018).
[5]        Chahardoli, A., Karimi, N., Fattahi, A., "Nigella arvensis leaf extract mediated green synthesis of silver nanoparticles: Their characteristic properties and biological efficacy", Adv. Powder Tech., 29,
pp. 202-210, (2018).
[6]        Mohammadlou, M., Jafarizadeh-Malmiri, H., Maghsoudi, H., "Hydrothermal green synthesis of silver nanoparticles using Pelargonium/Geranium leaf extract and evaluation of their antifungal activity", Green Process. and Synth., 6, pp. 31-42, (2017).
[7]        Ashtaputrey, S. D., Ashtaputrey, P. D., Rathod, G., "Eco-friendly green synthesis and characterization of silver nanoparticles derived from Murraya koenigii leaves extract", Asian J. of Chem., 29,
pp. 1966-1968, (2017).
[8]        Ghanbari, S., Vaghari, H., Sayyar, Z., Adibpour, M., Jafarizadeh-Malmiri, H., "Autoclave-assisted green synthesis of silver nanoparticles using A. fumigatus mycelia extract and the evaluation of their
physico-chemical properties and antibacterial activity", Green Process. and Synth, 7, pp. 217-224, (2018).
[9]        Vijayan, R., Joseph, S., Mathew, B., "Indigofera tinctoria leaf extract mediated green synthesis of silver and gold nanoparticles and assessment of their anticancer, antimicrobial, antioxidant and catalytic properties", Artifi. Cells, Nanomed. and Biotech., 46, pp. 861-871, (2018).
[10]      Eskandari-Nojedehi, M., Jafarizadeh-Malmiri, H., Rahbar-Shahrouzi, J., "Hydrothermal green synthesis of gold nanoparticles using mushroom (Agaricus bisporus) extract: physico-chemical characteristics and antifungal activity studies", Green Process. and Synth., 7, pp. 38-47, (2018).
[11]      Vahidi, A., Vaghari, H., Najian, Y., Najian, M. J., Jafarizadeh-Malmiri, H., "Evaluation of three different green fabrication methods for the synthesis of crystalline ZnO nanoparticles using Pelargonium zonale leaf extract", Green Process. and Synth., 8,
pp. 302-308, (2019).
[12]      Birusanti, A. B., Mallavarapu, U., Nayakanti, D., Espenti, C. S., Mala, S., "Sustainable green synthesis of silver nanoparticles by using Rangoon creeper leaves extract and their spectral analysis and anti-bacterial studies", IET Nanobiotech., 13, pp. 71-76, (2019).
[13]      Fardsadegh, B. Jafarizadeh-Malmiri, H., "Aloe vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their In vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains", Green Process. and Synth., 8, pp. 399-407, (2019).
[14]      Ahmadi, O., Jafarizadeh-Malmiri, H., Jodeiri, N., "Optimization of processing parameters for hydrothermal silver nanoparticles synthesis using Aloe vera leaf extract and estimation of their physico-chemical and antifungal properties", Zeits. für Physikal. Chem., 233, pp. 651-667, (2019).
[15]      Kumar, B., Smita, K., Cumbal, L., Debut, A., "Ficus carica (Fig) fruit mediated green synthesis of silver nanoparticles and its antioxidant activity: a comparison of thermal and ultrasonication approach", BioNano Sci., 6, pp. 15-21, (2016).
[16]      Ahmadi, O., Jafarizadeh-Malmiri, H., Jodeiri, N., "Eco-friendly microwave-enhanced green synthesis of silver nanoparticles using Aloe vera leaf extract and their physico-chemical and antibacterial studies", Green Process. and Synth., 7, pp. 231-240, (2018).
[17]      Eskandari-Nojehdehi, M., Jafarizadeh-Malmiri, H., Rahbar-Shahrouzi, J., "Optimization of processing parameters in green synthesis of gold nanoparticles using microwave and edible mushroom (Agaricus bisporus) extract and evaluation of their antibacterial activity", Nanotech. Rev., 5, pp. 537-548, (2016).
[18]      Ukkund, S. J., Darshanram, Khan, Z., Sanjay, Patil, R., Udupa, A., Nellerichale, A., Puthiyillam, P., "Microwave assisted green synthesis and characterization of silver nanoparticles from Hibiscus leaf extract and investigation of their antimicrobial activities", in AIP Conference Proceedings. (2019).
[19]      Suarez, V., Hernández Wong, J., Nogal, U., Calderón, A., Rojas-Trigos, J. B., Juárez, A. G., Marín, E., "Study of the heat transfer in solids using infrared photothermal radiometry and simulation by COMSOL Multiphysics", Appl. Rad. and Isotopes, 83, pp. 260-263, (2014).
[20] Turgay, M. B. Yazıcıoğlu, A. G., "Numerical simulation of fluid flow and heat transfer in a trapezoidal microchannel with COMSOL multiphysics: A case study", Num. Heat Trans.; Part A: Appli., 73, pp. 332-346, (2018).