الگوسازی هم‌دمای جذب دی‌اکسیدکربن و سولفید هیدروژن با استفاده از چارچوب‌های فلزی- آلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه علم و صنعت ایران

2 دانشگاه علم و صنعت

چکیده

در این تحقیق ظرفیت جذب و ذخیره­سازی دی‌اکسیدکربن و سولفید هیدروژن
با استفاده از چارچوب­های فلزی- آلی مطالعه و الگوسازی شده است. بررسی چهار نوع جاذب مختلف فلزی- آلی از نوع بسپار
کوئوردیناسیونیمیکرومتخلخل شامل MOF-2(Zn2(BDC)2)، MOF-74(Zn2(DHBDC))، IRMOF-1(Zn4O(BDC)3) وMOF-177 (Zn4O(BTB)2)  نشان داد که با توجه به ساختار و گروه­های عاملی مختلف این جاذب­ها باعث شده عملکرد متفاوتی از خود در جذب گازها ارائه کنند. داده­های تجربی هم­دما با الگو­های هم­دمای دو مؤلفه‌ا‌ی ارزیابی شد. برای محاسبۀ مؤلفه‌های الگو­ها از روش عددی برازش غیر خطی استفاده شد. بر اساس نتایج الگوسازی، الگو­های دو مؤلفه‌‌ای پیش‌بینی قابل قبولی از داده­های تجربی جذب سولفید هیدروژن و دی‌اکسیدکربن نشان داد. الگوی هیل در مقایسه با دیگر الگو­ها دقت بیشتری دارد. مقادیر مؤلفۀ‌ انرژی الگوی دوبینین-رادوشکویچ برای تمامی جاذب­ها نشان داد که فرایند جذب هر دو گاز فیزیکی است و جاذب IRMOF-1 برای گاز سولفید هیدروژن و MOF-74 و  MOF-2 برای دی‌اکسیدکربن، مناسب است.

کلیدواژه‌ها


[1]        Polat, H. M., Kavak, S., Kulak, H., Uzun, A., Keskin, S., "CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: Linking high-throughput computational screening with experiments", Chemical engineering journal,
p. 124916, (2020).
[2]        Shi, G., Xu, W., Wang, J., Yuan, Y., Chaemchuen, S., Verpoort, F., "A Cu-based MOF for the effective carboxylation of terminal alkynes with CO2 under mild conditions", Journal of CO2 Utilization, 39,
p. 101177, (2020).
[3]        Yang, R. T., "Adsorbents, Fundamentals and Applications", University of Michigan, Department of Chemical Engineering, (2003).
 
 
[4]        Li, H., Eddaoudi, M., O'Keeffe M., Yaghi, O. M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", nature, 402, pp. 276-279, (1999).
[5]        Ghanbari, T., Abnisa, F., Daud, W. M. A. W., "A review on production of metal organic frameworks (MOF) for CO2 adsorption", Science of The Total Environment, 707, p. 135090, (2020).
[6]        Liu, J., Chen, C., Zhang, K., Zhang, L., "Applications of metal–organic framework composites in CO2 capture and conversion", Chinese Chemical Letters, pp. 12934-12943, (2020).
[7]        Rowsell, J. L., Millward, A. R., Park, K. S., Yaghi, O. M., "Hydrogen sorption in functionalized
metal− organic frameworks", Journal of the American Chemical Society, 126, pp. 5666-5667, (2004).
[8]        Bourrelly, S., Llewellyn, P. L., Serre C., Millange, F., Loiseau, T., Férey, G., "Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47", Journal of the American Chemical Society, 127, pp. 13519-13521, (2005).
[9]        Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y., Férey, G., "How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL‐53", Angewandte Chemie, 118, pp. 7915-7918, (2006).
[10]      Dybtsev, D. N., Chun, H., Yoon, S. H., Kim D., Kim K., "Microporous manganese formate: a simple metal− organic porous material with high framework stability and highly selective gas sorption properties", Journal of the American Chemical Society, 126,
pp. 32-33, (2004).
[11]      Hayashi, H., Cote, A.P., Furukawa, H., O’Keeffe, M., Yaghi O. M., "Zeolite A imidazolate frameworks", Nature materials, 6, pp. 501-506, (2007).
[12]      Xue, M., Ma, S., Jin, Z., Schaffino, R. M., Zhu, G.
-S., Lobkovsky, E. B., Qiu, S. -L., Chen B., "Robust metal− organic framework enforced by
triple-framework interpenetration exhibiting high H2 storage density", Inorganic chemistry, 47,
pp. 6825-6828, (2008).
[13]      Babarao, R. Jiang J., "Molecular screening of
metal− organic frameworks for CO2 storage", Langmuir, 24, pp. 6270-6278, (2008).
[14]      Walton, K. S., Millward, A. R., Dubbeldam, D., Frost, H., Low, J. J., Yaghi, O. M., Snurr R. Q., "Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks", Journal of the American Chemical Society, 130, pp. 406-407, (2008).
[15]      Bae, Y. -S., Farha, O. K., Spokoyny, A. M., Mirkin, C. A., Hupp, J. T., Snurr R. Q., "Carborane-based metal–organic frameworks as highly selective sorbents for CO2 over methane", Chemical communications, pp. 4135-4137, (2008).
[16]      Yazaydın, A. O. Z. R., Snurr, R. Q., Park, T. -H., Koh, K., Liu, J., LeVan, M. D., Benin, A. I., Jakubczak, P., Lanuza, M., Galloway, D. B., "Screening of metal− organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach", Journal of the American Chemical Society, 131, pp. 18198-18199, (2009).
[17]      Demessence, A., D’Alessandro, D. M., Foo, M. L., Long, J. R., "Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine", Journal of the American Chemical Society, 131, pp. 8784-8786, (2009).
[18]      Furukawa, H. Yaghi O. M., "Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications", Journal of the American Chemical Society, 131, pp. 8875-8883, (2009).
[19]      Banerjee, R., Furukawa, H., Britt, D., Knobler, C., O’Keeffe, M., Yaghi O. M., "Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties", Journal of the American Chemical Society, 131, pp. 3875-3877, (2009).
[20]      Galli, S., Masciocchi, N., Tagliabue, G., Sironi, A., Navarro, J. A., Salas, J. M., Mendez‐Liñan, L., Domingo, M., Perez-Mendoza M., Barea E., "Polymorphic coordination networks responsive to CO2, moisture, and thermal stimuli: porous cobalt (II) and zinc (II) Fluoropyrimidinolates", Chemistry–A European Journal, 14, pp. 9890-9901, (2008).
[21]      Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. Ö., Snurr, R. Q., O’Keeffe, M., Kim, J., "Ultrahigh porosity in metal-organic frameworks", Science, 329, pp. 424-428, (2010).
[22]      Zhang, S. -M., Chang, Z., Hu, T. -L., Bu, X. -H., "New three-dimensional porous metal organic framework with tetrazole functionalized aromatic carboxylic acid: synthesis, structure, and gas adsorption properties", Inorganic chemistry, 49,
pp. 11581-11586, (2010).
[23]      Zhang, Z., Xiang, S., Chen, Y. -S., Ma, S., Lee, Y., Phely-Bobin, T., Chen, B., "A Robust Highly Interpenetrated Metal−Organic Framework Constructed from Pentanuclear Clusters for Selective Sorption of Gas Molecules", Inorganic chemistry, 49, pp. 8444-8448, (2010).
[24]      Zhang, Z., Xiang, S., Rao, X., Zheng, Q., Fronczek, F. R., Qian, G., Chen B., "A rod packing microporous metal–organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene", Chemical communications, 46, pp. 7205-7207, (2010).
[25]      Seo, J., Jin, N., Chun H., "Topologies of Metal−Organic Frameworks Based on Pyrimidine-5-carboxylate and Unexpected Gas-Sorption Selectivity for CO2", Inorganic chemistry, 49, pp. 10833-10839, (2010).
[26]      Xie, J., Yan, N., Liu, F., Qu, Z., Yang, S., Liu, P., "CO2 adsorption performance of ZIF-7 and its endurance in flue gas components", Frontiers
of Environmental Science & Engineering, 8,
pp. 162-168, (2014).
[27]      Qasem, N. A. A., Ben-Mansour, R., "Adsorption breakthrough and cycling stability of carbon dioxide separation from CO2/N2/H2O mixture under ambient conditions using 13X and Mg-MOF-74", Applied Energy, 230, pp. 1093-1107, (2018).
[28]      Hossain, M. I., Cunningham, J. D., Becker, T. M., Grabicka, B. E., Walton, K. S., Rabideau, B. D., Glover T. G., "Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66", Chemical Engineering Science, 203, pp. 346-357, (2019).
[29]      Chen, W., Zhang, Z., Hou, L., Yang, C., Shen, H., Yang, K., Wang, Z., "Metal-organic framework MOF-801/PIM-1 mixed-matrix membranes for enhanced CO2/N2 separation performance", Separation and Purification Technology, 250,
p. 117198, (2020).
[30]      Hwang, Y. K., Hong, D. -Y., Chang, J. -S., Seo, H., Yoon, M., Kim, J., Jhung, S. H., Serre, C., Férey, G., "Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101", Applied Catalysis A: General, 358, pp. 249-253, (2009).
[31]      Heymans, N., Vaesen, S., De Weireld G., "A complete procedure for acidic gas separation by adsorption on MIL-53 (Al)", Microporous and Mesoporous Materials, 154, pp. 93-99, (2012).
[32]      Saha, D., Zacharia, R., Lafi, L., Cossement, D., Chahine R., "Synthesis, characterization and hydrogen adsorption on metal-organic frameworks Al, Cr, Fe and Ga-BTB", Chemical engineering journal, 171, pp. 517-525, (2011).
[33]      Saha, D., Zacharia, R., Lafi, L., Cossement, D., Chahine R., "Synthesis, characterization and hydrogen adsorption properties of metal–organic framework Al-TCBPB", International Journal of Hydrogen Energy, 37, pp. 5100-5107, (2012).
[34]      Jhung, S. H., Khan, N. A., Hasan Z., "Analogous porous metal–organic frameworks: synthesis, stability and application in adsorption", CrystEngComm, 14, pp. 7099-7109, (2012).
[35]      Wang, X. -L., Fan, H. -L., Tian, Z., He, E. -Y., Li, Y., Shangguan, J., "Adsorptive removal of sulfur compounds using IRMOF-3 at ambient temperature", Applied surface science, 289, pp. 107-113, (2014).
[36]      Ma, Y., Su, H., Kuang, X., Li, X., Zhang, T., Tang, B., "Heterogeneous nano metal–organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells", Analytical chemistry, 86, pp. 11459-11463, (2014).
[37]      Xia, L., Cui, Q., Suo, X., Li, Y., Cui, X., Yang, Q., Xu, J., Yang, Y., Xing, H., "Efficient, selective, and reversible SO2 capture with highly crosslinked ionic microgels via a selective swelling mechanism", Advanced Functional Materials, 28, p. 1704292, (2018).
[38]      Martínez-Ahumada, E., López-Olvera, A., Jancik, V., Sánchez-Bautista, J. E., González-Zamora, E., Martis V., Williams D. R., Ibarra I.A., "MOF Materials for the Capture of Highly Toxic H2S and SO2", Organometallics, 39, pp. 883-915, (2020).
[39]      Wang, R., Mi, J. -S., Dong, X. -Y., Liu, X. -F., Lv, Y. -R., Du, J., Zhao, J. -Y., Zang S. -Q., "Creating a Polar Surface in Carbon Frameworks from Single-Source Metal–Organic Frameworks for Advanced CO2 Uptake and Lithium–Sulfur Batteries", Chemistry of Materials, 31, pp. 4258-4266, (2019).
[40]      Pai, K. N., Baboolal, J. D., Sharp, D. A., Rajendran, A., "Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption", Separation and Purification Technology, 211, pp. 540-550, (2019).
[41]      Gaikwad, S., Kim, S. -J., Han S., "Novel
metal–organic framework of UTSA-16 (Zn) synthesized by a microwave method: Outstanding performance for CO2 capture with improved stability to acid gases", Journal of Industrial and Engineering Chemistry, 87, pp. 250-263, (2020).
[42]      Khambhaty, Y., Mody, K., Basha, S., Jha, B., "Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger", Chemical engineering journal, 145, pp. 489-495, (2009).
[43]      Langmuir, I., "The constitution and fundamental properties of solids and liquids. Part I. Solids", Journal of the American Chemical Society, 38,
pp. 2221-2295, (1916).
[44]      Freundlich, H. M. F., "Over the adsorption in solution", Philosophy Chemistry Journal, 57,
pp. 385–471, (1906).
[45]      Dubinin, M. M., Radushkevich, L. V., "The equation of the characteristic curve of the activated charcoal", Proceedings of the Academy of Sciences, Physical Chemistry Section, 55, pp. 331–337, (1947).
[46]      Ghaemi, A., Hemmati, A. R., "Mass Transfer Coefficent for PZ+ CO2+H2O system in a packed column", Heat and Mass Transfer, (2020).
[47]      Jnr, M. H., Spiff, A. I., "Equilibrium sorption study of Al3+, CO2+ and Ag+ in aqueous solutions by fluted pumpkin (Telfairia occidentalis HOOK f) waste biomass", Acta Chim. Slov, 52, pp. 174-181, (2005).
[48]      Boulinguiez, B., Le Cloirec, P., Wolbert, D., "Revisiting the Determination of Langmuir Parameters Application to Tetrahydrothiophene Adsorption onto Activated Carbon", Langmuir, 24, pp. 6420-6424, (2008).
[49]      Kumar, K. V., Sivanesan, S., "Pseudo second order kinetics and pseudo isotherms for malachite green onto activated carbon: comparison of linear and
non-linear regression methods", Journal of Hazardous Materials, 136, pp. 721-726, (2006).
 
[50]      Ng, J., Cheung, W., McKay, G., "Equilibrium studies of the sorption of Cu (II) ions onto chitosan", Journal of Colloid and Interface Science, 255, pp. 64-74, (2002).
[51]      Millward, A. R., "Adsorption of environmentally significant gases (hydrogen, carbon dioxide, hydrogen sulfide, methane) in metal-organic frameworks", University of Michigan, (2006).