الگوسازی و شبیه‌سازی فرایند حذف زیستی مس در یک ستون بستر ثابت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه علم و صنعت ایران

2 دانشگاه علم و صنعت

3 دانشجو دانشکده مهندسی شیمی، نفت و گاز، دانشگاه علم و صنعت ایران

چکیده

در اینتحقیق فرایند جذب زیستی فلز مس بهوسیلۀ قارچ میله­ای رزوپوساریزوس در یک بستر ثابت از پساب‌‌های صنعتی الگوسازی شدهاست. عملکرد سه ایزوترم لانگمویر، فروندلیچ و BET برای محاسبۀ شدت جذب مقایسه‌شدند. براساس نتایج الگوسازی، الگوی فرندلیچ با ضریب همبستگی 974/0 نسبت به دیگر الگو­های ارائه شده تطابق بهتری با نتایج تجربی نشانداد. بیشترین تطابقات الگوی فروندلیچ با داده‌های تجربی برابر در مقادیر 855/01/n= و 991/0K= بهدستآمد. در ادامه، اثر مؤلفه‌های الگوی انتخابشده بر میزان جذب بررسیشد که مشخصشد در یکضریب ثابت فروندلیچ، افزایش در مقدار توان الگو باعث افزایش ظرفیت جذب در دسترس برای غلظت کم املاح می­شود. همچنین ­اثر
شرایط عملیاتی در ستون از قبیل بده حجمی، قطر ستون، طول ستون، غلظت اولیه و چگالی جاذب بر میزان جذب بررسی
شد. بهطور کلی می­توان گقت که الگوسازی فرایندهای زیستی برای حذف فلزات یکی از ابزار مهم در شناخت رفتار این فرایندها است و با کمترین هزینه می­توان عملکرد فرایند را در شرایط مختلف عملیاتی ارزیابی‌کرد.

کلیدواژه‌ها


 

[1]        Stratton, G. W., "Review in Environmental Toxicology", Elsevier, Amsterdam, (1987).
[2]        Gadd, G. M., "Encyclopedia of Microbiology", Academic Press Inc., Harcourt Brace Javanovich Publishers, San Diego, (1992).
[3]        Gadd, G. M., "Molecular biology and biotechnology of microbial interactions with organic". FEMS Microbiology Letter, Vol. 100, pp. 197-204 (1992).
[4]        Gadd, G. M, Griffiths, A. J., "Microorganisms and heavy metal toxicity". Microbial Ecology, 4:
pp. 303-317 (1978).
[5]        Volesky, B., "Biosorbent materials", TIBS, 5:
pp. 96-101 (1987).
[6]        Tung, C. C, Yang, Y. M., Chang, C. H., Maa, J. R., "Removal of copper ions and dissolved phenol from water using micellar-enhanced ultrafiltration
with mixed surfactants". Waste Management, 22:
pp. 695-701 (2002).
[7]        Han, R., Zhang, J., Zou, W., Xiao, H., Shi, J., Liu, H., "Biosorption of copper (II) and lead (II) from aqueous solution by chaff in a fixed-bed column", Journal of Hazardous Materials, 133: pp. 262-268 (2006).
[8]        Amarasinghe, B., Williams, R. A., "Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater", Chemical Engineering Journal, 132: pp. 299-309 (2007).
 
[9]        Apiratikul, R., Pavasant,  P., "Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash", Chemical Engineering Journal, 144: pp. 245-258 (2008).
[10]      Fagundes-Klen, M., Veit, M., Borba, C., Bergamasco, R., Lima Vaz, L., Da Silva, E., "Copper Biosorption by Biomass of Marine Alga: Study of Equilibrium and Kinetics in Batch System and Adsorption/ Desorption Cycles in Fixed Bed Column", Air & Soil Pollution, 213: pp. 15-30 (2010).
[11]      Stylianou, M. A., Inglezakis, V. J., Moustakas, K. G., Malamis, S. P., Loizidou, M. D., "Removal of Cu (II) in fixed bed and batch reactors using natural zeolite and exfoliated vermiculite as adsorbents", Desalination, 15: pp. 133-142 (2007).
[12]      Lu, X., Wang, L., Lei, K., Huang, J., Zhai, Y., "Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji", NW China, Journal of Hazardous Materials, 161:
pp. 1058–1062 (2009).
[13]      Shi, W. Y., Shao, H. B., Li, H., Shao, M. A., Du, S., "Progress in the remediation of hazardous heavy metal-polluted soils bynatural zeolite", Journal of Hazardous Materials, 170: pp. 1-6 (2009).
[14]      Volesky, B., "Biosorption of Heavy Metals", CRC Press, Boca Raton (1990).
[15]      Ting, V. P., Lawson, F., Prince, I. G., "Uptake of cadmium and zinc by the individual ion species", Journal of Biotechnology and Bioengineering, 34:
pp. 990-999 (1988).
[16]      Naja, G., Volesky, B., "Multi-metal biosorption in a fixed-bed flow-through column", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281: pp. 194-201 (2006).
[17]      McHale, A. P., McHale, S., "Microbiol biosorption of metals: potential in the treatment of metal pollution", Journal of Biotechnology Advances, 12: pp. 647-652 (1994).
[18]      Tsezos, M., Volesky, B., "The mechanism of uranium biosorption by Rhizopus arrhizus", Journal of Biotechnology and Bioengineering, 24: pp. 385-401 (1982).
[19]      Garnham, G. W., Codd, G. A., Gadd, G. M., "Effect of nutritional regime on accumulation of cobalt, manganese and zince by green microbial", Journal of Applied Microbiology and Biotechnology, 37:
pp. 270-276 (1992).
[20]      Kratochivil, D., Volesky, B.,"Advances in the Biosorption of Heavy Metals", Journal of Biotechnology Reviews, 16: pp. 291-300 (1998).
[21]      Kuyucak, N., Volesky, B., "Biosorbents for recovery of metals from industrial solutions", Journal of Biotechnology Letter, 33: pp. 823-831 (1989).
[22]      Gadd, G. M., "Heavy metal accumulation by bacteria and other microorganisms", Experientia, 46:
pp. 834-840 (1990).
[23]      Wase, J., Foster, C., "Biosorbents for Metal Ions", Taylor and Francis Ltd., London, (1997).
[24]      Greene, B., Darnall, D. W., "Microbial Minera Recovery", McGraw Hill (1990).
[25]      Remacle, J., "Biosorption of heavy Metals", CRC Press, Boca Raton, Florida (1990).
[26]      Norberg, A., Persson, H., "Accumulation of
heavy-metal ions by Zoogloea ramigera", Journal of Biotechnology and Bioengineering, 26: pp. 239-246 (1984).
[27]      Norberg, A., Rydin, S., "Development of a continuous process for metal accumulation by Zoogloea ramigera", Journal of Biotechnology and Bioengineering, 26, pp. 265-268 (1984).
[28]      Greene, B., McPherson, R., Darnall, D., "In Metals Speciation Separation and Recovery", lewis Publishers, Chelsea (1987).
[29]      Crist, R. H., OBerholser, K., Shank, N., Nguyen, M., "Nature of bonding between metallic ions and algal cell walls", Environmental Science and Technology, 15: pp. 1212-1217 (1981).
[30]      Holan, Z. R., Volesky, B., "Biosorption of lead and nickel by biomass of marine algae", Journal
of Biotechnology and Bioengineering, 43,
pp. 1001-1009 (1994).
[31]      Puranik, P. R., Paknikar, K. M. J., "Biosorption of lead and zinc from solutions using Streptoerticillium cinnamoneum waste biomass", Journal of Biotechnology, 55: pp. 113-124 (1997).
[32]      Ulku, Y., "The removal of pb by phanerocaete chrysporriomj", Water Resource, 34: pp. 4090-4100 (2000).
[33]      Wang, J. L., Chen, C., "Biosorption of heavy metals by Saccharomyces cerevisiae, a review", Biotechnology Advances, 24: pp. 427–51 (2006).
[34]      Park, J. K., Lee, J. W., Jung, J. Y., "Cadmium uptake capacity of two strains of Saccharomyces cerevisiae cells", Enzyme Microbial Technology, 33, pp. 371–8 (2003).
[35]      Ahluwalia, S. S., Goyal, D., "Microbial and plant derived biomass for removal of heavy metal from wastewater", Bioresource Technology, 98: pp. 43–57 (2007).
[36]      Vijayaraghavan, K., Yun, Y. S., "Bacterial biosorbents and biosorption", Biotechnology Advances, 26: pp. 266–291 (2008).
[37]      Mike, A. A., Kannan, P., Ajit, P. A., Piet N. L. L., "Removal of Cu(II) by biosorption onto coconut shell in fixed-bed column systems", Journal of Industrial and Engineering Chemistry, 19: pp. 849-853 (2012).
[38]      Zachariah E. J., Muralidharan, V., "Feasibility study on the use of retting gas as a fuel source", Ministry for Non-Conventional Energy Sources, Govt. of India (1994).
[39]      Langmuir, I, "The adsorption of gases on plane surfaces of glass, mica and platinum", Journal of American Chemistry Society, pp. 1361–403 (1918).
 
[40]      Freundlich, H., "Adsorption in solutions", Z Phys Chem (Germany), 57: pp. 385–470 (1906).
[41]      Sips, R., "On the structure of a catalyst surface". Journal of Chemistry and Physics, 16: pp. 490–5 (1948).
[42]      Brunauer, S., Emmett, P. H., Teller, E., "Adsorption of gases in multimolecular layers", Journal of American Chemistry Society, 60: pp. 309–19 (1938).