جذب سطحی والریک‌اسید از محیط آبی به‌وسیلۀ کربن فعال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی -دانشکده فنی ومهندسی -دانشگاه گیلان رشت-ایران

2 گروه مهندسی شیمی- دانشکده فنی و مهندسی -دانشگاه گیلان رشت-ایران

3 گروه مهندسی شیمی دانشکده فنی دانشگاه گیلان

4 دانشگاه گیلان

چکیده

در پژوهش حاضر، جداسازی والریک‌اسید به‌روش جذب سطحی با کربن فعال در دماهای گوناگون ارزیابی‌شد. عوامل مختلفی شامل زمان، دوز جاذب، درجۀ حرارت،  pH، اندازۀ ذره و غلظت اولیه مطالعه‌شد. زمان تعادل، دوز جاذب و دمای مطلوب به‌ترتیب 120 دقیقه،
1 گرم و 45 درجۀ سلسیوس مشاهده‌شد.
pH مناسب برابر 4 تعیین شد. با بررسی روابط هم‌دمایی، الگوی لانگمویر با نتایج آزمایشگاهی تطابق مناسبی داشت. طبق این الگو، بالاترین ظرفیت جذب 078/196 میلی­گرم بر گرم حساب‌شد. به‌علاوه، الگوی شبه مرتبۀ دوم همبستگی بیشتری را در میان سایر روابط جنبش‌شناختی از خود نشان داد. علامت‌های منفی انرژی آزاد گیبس و مثبت آنتالپی به‌ترتیب، بیانگر خود­به­خودی و گرماگیر بودن فرایند است. هم‌چنین، علامت مثبت تغییرات آنتروپی در این پژوهش گویای افزایش فعالیت ذرات در حین جذب بر روی کربن فعال تسن.

کلیدواژه‌ها


عنوان مقاله [English]

Adsorption of Valeric Acid from Aqueous Solution Onto the Activated Carbon

نویسندگان [English]

  • H. Masoomie 1
  • R. Jamshidian 2
  • H. Ghanadzadeh Gilani 3
  • B. Abbasi Souraki 4
1 University Of Guilan
2 University Of Guilan
3 University Of Guilan
4 University Of Guilan
چکیده [English]

In this research, adsorption of valeric acid from aqueous solution was investigated at different temperatures (25, 35 and 45°C) by using activated carbon in a batch system. In order to determine the functional groups in structure of adsorbent and surface characteristics of adsorbent, FTIR and SEM analysis were used, respectively. In the adsorption experiments, the effect of important parameters such as effect of contact time, the amount of adsorbent, temperature and initial acid concentration were investigated. Equilibrium time was determined 120 min. The optimum amount of adsorbent was determined 1.0g (for 40ml of solution). Investigation of the temperature effect demonstrated that the percentage of removed valeric acid increased by increasing the temperature. Different types of adsorption isotherms models such as Langmuir, Freundlich, and Temkin models were applied to analyze the equilibrium data at different temperatures and Langmuir isotherm had the most agreement with experimental data at different temperatures (with maximum R2 values). The maximum adsorption capacity by using Langmuir isotherm model was determined 196.078 mg/g. Different kinetic models such as pseudo- first order, pseudo-second order, Elovich and intraparticle diffusion model were chosen to describe the kinetic of adsorption, and pseudo-second order model had the best agreement with experimental data for each adsorbents.
Thermodynamic parameters like standard Gibbs free energy changes of adsorption  , standard enthalpy changes of adsorption  and standard entropy changes of adsorption  were calculated by using equilibrium constant values at different temperatures. Negative value of  demonstrated that adsorption of valeric acid was spontaneity and positive values of  showed that adsorption of valeric acid on adsorbent was endothermic.

کلیدواژه‌ها [English]

  • Adsorption
  • Valeric Acid
  • Activated Carbon
  • Isotherm
  • Kinetic
  • Thermodynamics
[1]        Badawi, H. M., Förner, W., Ali, S. A., "A study of the experimental and theoretical infrared, Raman, 1H and 13C NMR spectra of the biochemicals valeric and valproic acids", Journal of Molecular Structure, 1075: pp. 494-503, (2014).
[2]        Hansen, O. C., Pedersen, E., "Migration and health assessment of chemical substances in surface treated wooden toys", Danish Environmental Protection Agency, 60: pp. 37-47, (2005).
[3]        El-Sayed, Y., Bandosz, T. J., "Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites", Journal of colloid and interface science, 273: pp. 64-72, (2004).
[4]        Seader, J. D., Henley, E. J., Roper, D. K., "Separation process principles", 1st ed.,Wiley, New York, (1998).
[5]        Treybal, R. E., "Mass transfer operations", 2nd ed., McGraw-Hill, New York, (1980).
[6]        Ruthven, D. M., "Principles of adsorption and adsorption processes", 1st ed., John Wiley & Sons, New York, (1984).
[7]        Giles, C. H., "Studies in adsorption", 1st ed., McGraw-Hill, New York , (1961).
[8]        Ruthven, D. M., Pressure, F., "Swing Adsorption", 1st ed., VCH Publishers, New York, (1994).
[9]        Bansal, R. C., Goyal, M. , "Activated carbon adsorption", 1st ed., CRC press, New York, (2005).
[10]      Crittenden, J. C., Weber, W. J., "Model for design of multicomponent adsorption systems", Journal of the Environmental Engineering Division, 104:
pp. 1175-1195, (1978).
[11]      Ho, Y. S., "Review of second-order models for adsorption systems", Journal of hazardous materials, 136: pp. 681-689, (2006).
[12]      Jaafar, S. N., "Adsorption study-dye removal using clay", 1st ed., KUKTEM, Malaysia, (2006).
[13]      Akrout, H. , Jellali, S., Bousselmi, L., "Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust", Comptes Rendus Chimie, 18: pp. 110-120, (2015).
[14]      Pérez, R., Utrilla, J., Pacheco, C. , Polo, M., Peñalver, J., "Kinetic study of tetracycline adsorption on sludge-derived adsorbents in aqueous phase", Chemical engineering journal, 213: pp. 88-96, (2012).
[15]      Asgari, G., Mortazavi, S. B., Hashemian, S. J., Mosavi, S. G., "Evaluation of Performance Catalytic Ozonation Process with Activated Carbon in the Removal of Humic Acids from Aqueous Solutions", Avicenna Journal of Clinical Medicine, 17: pp. 25-33, (2011).
[16]      Bailey, S. E., Olin, T. J., Bricka, R. M., Adrian, D. D., "A review of potentially low-cost sorbents for heavy metals", Water research, 33: pp. 2469-2479, (1999).
 
 
[17]      Mahmoud, M. E., Nabil, G. M., El-Mallah, N. M., Bassiouny, H. I., Kumar, S., Fattah, T. M., "Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent", Journal of Industrial and Engineering Chemistry, 37:
pp. 156-167, (2016).
[18]      Alguacil, D., Tervoort, E., Cattin, C., Gauckler, L. J., "Contact angle and adsorption behavior of carboxylic acids on α-Al2O3 surfaces", Journal of colloid and interface science, 353: pp. 512-518, (2011).
[20]      Ashraf Talesh, S. S., Yousefi Jolandan, H., "Fixed bed adsorption/desorption of Valeric acid from aqueous solution using granular activated charcoal", Iranian Journal of Chemistry and Chemical Engineering, in press, (2019).
[21]    قنادزاده گیلانی، ح.، جنگجوی شالدهی, ط.، ”بررسی پارامتر‌ های مؤثر بر استخراج اسید والریک به کمک سیستم‌ های دوفازی آبی"، نشریۀ شیمی و مهندسی شیمی ایران، 37(3)، (1397).
[22]      Liu, Z., Li, Y., Han, L., Li, J., Liu, J., Zhao, Z., Nie, W., Liu, Y., Wang, R., "PDB-wide collection of binding data: current status of the PDBbind database", Bioinformatics, 31: pp. 405-412, (2015).
[23]      El-Shafey, E., Ali, S. N., Al-Busafi, S., Al-Lawati, H. A., "Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal", Journal of environmental chemical engineering, 4:
pp. 2713-2724, (2016).
[24]      Luo, J., Lu, J. , Niu, Q., Chen, X., Wang, Z., Zhang, J., "Preparation and characterization of benzoic acid-modified activated carbon for removal of gaseous mercury chloride", Fuel, 160: pp. 440-445, (2015).
[25]      Uslu, H., "Adsorption equilibria of formic acid by weakly basic adsorbent Amberlite IRA-67: Equilibrium, kinetics, thermodynamic", Chemical Engineering Journal, 155: pp. 320-325, (2009).
[26]      Pimentel, P. M., Melo, M. A. F., Melo, D. M. A., Assunção, A. L. C., Henrique, D. M., Silva, C. N., González, G., "Kinetics and thermodynamics of Cu (II) adsorption on oil shale wastes", Fuel processing technology, 89: pp. 62-67, (2008).
[27]      Mostaedi, M., Asadollahzadeh, M., Hemmati, A., Khosravi, A., "Equilibrium, kinetic, and thermodynamic studies for biosorption of cadmium and nickel on grapefruit peel", Journal of the Taiwan Institute of Chemical Engineers, 44: pp. 295-302, 2013.
[28]      Ebrahimi, A., Ehteshami, M., Dahrazma, B., "Isotherm and kinetic studies for the biosorption of cadmium from aqueous solution by Alhaji maurorum seed", Process Safety and Environmental Protection, 98: pp. 374-382, (2015).
[29]      Gök, A., Gök, M. K., Aşçı, Y. S., Lalikoglu, M., "Equilibrium, kinetics and thermodynamic studies for separation of malic acid on layered double hydroxide (LDH)", Fluid Phase Equilibria, 372: pp. 15-20, (2014).
[30]      Ashokkumar, M., Mulvaney, P., Grieser, F., "The effect of pH on multibubble sonoluminescence from aqueous solutions containing simple organic weak acids and bases", Journal of the American Chemical Society, 121: pp. 7355-7359, (1999).
[31]      Nguyen, T., Ngo, H. H., Guo, W. S., Zhang, J., Liang, S., Yue, Q. Y., Li, Q., Nguyen, T. V., "Applicability of agricultural waste and by-products for adsorptive removal of heavy metals from wastewater", Bioresource technology, 148: pp. 574-585, (2013).
[32]      Dada, A., Olalekan, A., Olatunya, A., Dada, O., "Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk", Journal of Applied Chemistry, 3: pp. 38-45, (2012).
[33]    حسین, ق. گ.، علی، ق. گ.، پریسا، آ.، ”بررسی جذب فنل از محلول های آبی با استفاده از کربن هستۀ انار"، نشریۀ شیمی و مهندسی شیمی ایران، 37(3)، (1397).
[34]      Al-Anber, Z. A., Al-Anber, M. A., Matouq, M., Al-Ayed, O., Omari, N. M., "Defatted Jojoba for the removal of methylene blue from aqueous solution: Thermodynamic and kinetic studies", Desalination, 276: pp. 169-174, (2011).
[35]      Edmiston, P. L., Gilbert, A. R., Harvey, Z., Mellor, N., "Adsorption of short chain carboxylic acids from aqueous solution by swellable organically modified silica materials", Adsorption, 24: pp. 53-63, (2018).
[37]      Liu, Z., Xia, Y., Lai, Q., An, M., Liao, Y., Wang, Y., "Adsorption behavior of mixed dodecane/n-valeric acid collectors on low-rank coal surface: Experimental and molecular dynamics simulation study", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583: p. 123840, (2019).