بهبود عملکرد سامانۀ نمک‌زدایی جذب سطحی با بازیابی حرارت بستر احیا شده

نویسنده

دانشگاه اصفهان

چکیده

در اینپژوهش روشی برای بازیابی حرارتی گرمای بستر احیا شدۀ یک سامانۀ نمک­زدایی جذب سطحی با دو بستر ارائه شدهاست. اثر بازیابی حرارتی بسترها بر عملکرد سامانه بررسی شدهاست. اثر دمای آب گرم­کننده و آب خنک­کنندۀ ورودی به بستر و چگالنده بر عملکرد سامانه و بازیابی حرارتی آن بررسی شده­است. در دمای آب خنک‌کننده ثابت، افزایش دمای آب گرم­کننده میزان آب تولیدی را افزایش می‌دهد و بر انرژی مصرفی
تأثیر چشمگیری ندارد؛ به
عنوان مثال در دمای آب خنک‌کننده 20 درجۀ سلسیوس، با افزایش دمای آب گرم­کننده  از 50 تا 90 درجۀ سلسیوس آب تولیدی 75/2 برابر می­شود، حال آن­که انرژی مصرفی 4/7 درصد کاهش می­یابد. بازیابی حرارتی موجب کاهش انرژی مصرفی سامانه می­شود. با افزایش دمای آب گرم­کننده اثر بازیابی حرارتی افزایش می­یابد. به‌گونه‌ای که درنتیجۀ بازیابی حرارت در آب گرم‌کننده 50 و 90 درجۀ سلسیوس مصرف انرژی سامانه بهترتیب 9/10 و 6/37 درصد کاهش پیدا میکند. افزایش دمای آب خنک‌کنندۀ ورودی به بستر و چگالنده موجب کاهش آب تولیدی و افزایش انرژی مصرفی سامانه می‌شود. اثر دمای آب خنک­کنندۀ ورودی به چگالنده بر آب تولیدی و انرژی مصرفی بیشتر از دمای آب خنک­کنندۀ ورودی به بستر است. با افزایش دمای آب خنک‌کننده صرفه­جویی انرژی در اثر بازیابی حرارتی کاهش می­یابد. در دمای آب خنک‌کننده 10 درجۀ سلسیوس، بازیابی حرارتی مصرف انرژی سامانه را حدود 47 درصد کاهش می­دهد؛ حال آن­که این مقدار در 23 درجۀ سلسیوس حدود 12 درصد است. اثر دمای آب خنک­کنندۀ ورودی به چگالنده از دمای آب خنک­کنندۀ ورودی به بستر بیشتر است. با افزایش دماهای آب خنک­کنندۀ ورودی به چگالنده از 15 به 35 درجۀ سلسیوس، صرفه­جویی انرژی مصرفی در اثر بازیابی حرارتی از 7/53 تا 3/9 درصد کاهش می‌یابد.

کلیدواژه‌ها


 

[1]        Betts, K., "Technology Solutions: Desalination, desalination everywhere", Environ Sci Technol,
Vol. 38, (13), pp. 246A-7A, (2004).
[2]        Tamburini, A., Tedesco, M., Cipollina, A., Micale, G., Ciofalo, M., Papapetrou, M., Van Baak, W., Piacentino, A., "Reverse electrodialysis heat engine for sustainable power production", Appl Energy,
Vol. 206, pp. 1334-1353, (2017).
[3]        Olkis, C., Santori, G., Brandani, S., "An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat", Appl Energy,
Vol. 231, pp. 222-234, (2018).
[4]        Giacalone, F., Olkis, C., Santori, G., Cipollina, A., Brandani, S., Micale, G., "Novel solutions for closed-loop reverse electrodialysis: Thermodynamic characterisation and perspective analysis", Energy, Vol. 166, pp. 674-689, (2019).
[5]        Bevacqua, M., Tamburini, A., Papapetrou, M., Cipollina, A., Micale, G., Piacentino, A., "Reverse electrodialysis with NH4HCO3-water systems for heat-to-power conversion", Energy, Vol. 137,
pp. 1293-1307, (2017).
[6]        Zheng, X., Chen, D., Wang, Q., Zhang, Z., "Seawater desalination in China: Retrospect and prospect", Chem Eng J, Vol. 242, pp. 404-413, (2014).
[7]        El-Dessouky, H. T., Ettouney, H. M., Al-Roumi, Y., "Multi-stage flash desalination: present and future outlook", Chem Eng J, Vol. 73, (2), pp. 173-190, (1999).
[8]        Palenzuela, P., Hassan, A. S., Zaragoza, G., Alarcón-Padilla, D. -C., "Steady state model for multi-effect distillation case study: Plataforma Solar de Almería MED pilot plant", Desalination, Vol. 337, pp. 31-42, (2014).
[9]        Al-Karaghouli, A., Kazmerski, L. L., "Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes", Renewable Sustainable Energy Rev, Vol. 24, pp. 343-356, (2013)
[10]      Ng, K. C., Shahzad, M. W., Son, H. S., Hamed, O. A., "An exergy approach to efficiency evaluation of desalination", Appl Phys Lett, Vol. 110, (18),
p. 184101, (2017).
[11]      Shahzad, M. W., Burhan, M., Ang, L., Ng, K. C., "Energy-water-environment nexus underpinning future desalination sustainability", Desalination,
Vol. 413, pp. 52-64, (2017).
[12]      Ng, K. C., Thu, K., Kim, Y., Chakraborty, A., Amy, G., "Adsorption desalination: An emerging low-cost thermal desalination method", Desalination, Vol. 308, pp. 161-179, (2013).
[13]      Wang, X., Ng, K. C., "Experimental investigation of an adsorption desalination plant using low-temperature waste heat", Appl Therm Eng, Vol. 25, (17), pp. 2780-2789, (2005)
[14]      El-Sharkawy, I. I., Thu, K., Ng, K. C., Saha, B. B., Chakraborty, A., Koyama, S., "Performance improvement of adsorption desalination plant: experimental investigation", International Review of Chemical Engineering, Vol. 6, (3), pp. 127-132, (2014).
[15]      Wang, X., Ng, K. C., Chakarborty, A., Saha, B. B., "How Heat and Mass Recovery Strategies Impact the Performance of Adsorption Desalination Plant: Theory and Experiments", Heat Transfer Eng,
Vol. 28, (2), pp. 147-153, (2007).
[16]      Mitra, S., Kumar, P., Srinivasan, K., Dutta, P., "Performance evaluation of a two-stage silica gel + water adsorption based cooling-cum-desalination system", Int J Refrig, Vol. 58,
pp. 186-198, (2015).
 
 
 
 
[17]      Alsaman, A. S., Askalany, A. A., Harby, K., Ahmed, M. S., "Performance evaluation of a solar-driven adsorption desalination-cooling system", Energy, Vol. 128, pp. 196-207, (2017).
[18]      Vodianitskaia, P. J., Soares, J. J., Melo, H., Gurgel, J. M., "Experimental chiller with silica gel: Adsorption kinetics analysis and performance evaluation", Energ Convers Manage, Vol. 132, pp. 172-179, (2017).
[19]      Sapienza, A., Gullì, G., Calabrese, L., Palomba, V., Frazzica, A., Brancato, V., La Rosa, D., Vasta, S., Freni, A.,Bonaccorsi, L.,Cacciola, G., "An innovative adsorptive chiller prototype based on 3 hybrid coated/granular adsorbers", Appl Energy, Vol. 179, pp. 929-938, (2016).
[20]      Chorowski, M., Pyrka, P., "Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration", Energy, Vol. 92, pp. 221-229, (2015).
[21]      Sharonov, V. E., Aristov, Y. I., "Chemical and adsorption heat pumps: Comments on the second law efficiency", Chem Eng J, Vol. 136, (2), pp. 419-424, (2008).
[22]      Al-Ghouti, M. A., Yousef, I., Ahmad, R., Ghrair, A. M., Al-Maaitah, A. A., "Characterization of diethyl ether adsorption on activated carbon using a novel adsorption refrigerator", Chem Eng J, Vol. 162, (1), pp. 234-241, (2010).
[23]      Wu, J. W., Biggs, M. J., Hu, E. J., "Thermodynamic analysis of an adsorption-based desalination cycle", Chem Eng Res Des, Vol. 88, (12), pp. 1541-1547, (2010).
 
[24]      Wu, J. W., Hu, E. J., Biggs, M. J., "Thermodynamic analysis of an adsorption-based desalination cycle (part II): Effect of evaporator temperature on performance", Chem Eng Res Des, Vol. 89, (10),
pp. 2168-2175, (2011).
[25]      Amirfakhraei, A., Zarei, T., Khorshidi, J., "Performance Improvement of Adsorption Desalination System by Applying Mass and Heat Recovery Processes", Thermal Science and Engineering Progress, Vol., p. 100516, (2020).
[26]      Thu, K., Saha, B. B., Chakraborty, A., Chun, W. G., Ng, K. C., "Study on an advanced adsorption desalination cycle with evaporator–condenser heat recovery circuit", Int J Heat Mass Transfer, Vol. 54, (1), pp. 43-51, (2011).
[27]      Thu, K., Yanagi, H., Saha, B. B., Ng, K. C., "Performance investigation on a 4-bed adsorption desalination cycle with internal heat recovery scheme", Desalination, Vol. 402, pp. 88-96, (2017).
[28]      Ng, K. C., Chua, H. T., Chung, C. Y., Loke, C. H., Kashiwagi, T., Akisawa, A., Saha, B. B., "Experimental investigation of the silica gel–water adsorption isotherm characteristics", Appl Therm Eng, Vol. 21, (16), pp. 1631-1642, (2001).
[29]      Liu, Y., "Some consideration on the Langmuir isotherm equation", Colloids Surf, A, Vol. 274, (1), pp. 34-36, (2006).
[30]      Atkins, P., Paula, J. D., Keeler, J., "Atkins' Physical chemistry". 11th ed., Oxford, Oxford University Press, (2018).