مروری بر جاذب‌های استحصال یون لیتیم از منابع محلول با غلظت کم

نویسندگان

پژوهشگاه شیمی و مهندسی شیمی ایران

چکیده

به دلیل کاربرد لیتیم در صنایع مختلف تقاضا برای آن افزایش یافته است. آب دریا منبع بزرگی از لیتیم است ولی غلظت لیتیم در آن بسیار پایین است. روش‌های متداول جداسازی در چنین غلظت‌های اندک کارایی لازم را ندارد. تحقیقات اخیر نشان داده
روش جذب تطبیق داده شده برای استخراج لیتیم از آب دریا و شورابه‌های با غلظت کم امیدوارکننده است. چالش‌های مهم استفاده از جاذب‌های یون لیتیم در عملیات صنعتی شامل استفاده زیاد از محلول، افت فشار در جذب، بازیافت دشوار جاذب‌های پودری و عملکرد احیاء ضعیف است. برای حل این مشکلات جاذب‌های پودری را با اصلاح سطح، افزودن قابلیت جداسازی مغناطیسی و تهیه کامپوزیت برای کاربرد صنعتی آماده می‌سازند. در این مقاله، مروری بر جاذب‌های متداول یون لیتیم شامل انواع غربال‌های یونی،
کرون اتر، کربن فعال، زئولیت و کلرید هیدرواکسید دوگانه آلومینیم لیتیم لایه‌ای و پارامترهای تاثیر گذار روی جذب لیتیم انجام گرفته است. همچنین روش‌هایی که در کاربردهای عملی موجب بهبود عملکرد هر یک از جاذب‌ها می‌شود بیان شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of Lithium Ion Adsorbents for Extracting of Lithium from Low-Concentration Soluble Sources

نویسندگان [English]

  • R. Jafari
  • F. Yazdani
Chemistry and Chemical Engineering Research Center of Iran (CCERCI)
چکیده [English]

Due to the applications of lithium in various industries, the demand for it has increased. Seawater is a great source of lithium, but its lithium concentration is very low. Conventional separation methods are not effective in such low concentrations. Using the absorption method adopted for extracting lithium from seawater and brines with low concentration, is promising. The main problems for the practical application of lithium-ion sieve include excessive solution use, loss of adsorption pressure, difficulty in recycling powder adsorbents and poor recycling performance. Therefore, powder adsorbents have been modified for practical application by surface modification, add magnetic properties and preparing composites of them. In this review paper, different types of lithium-ion adsorbents, including types of ion sieve, crown ether, activated carbon, zeolite, and lithium aluminium layered double hydroxide chloride (Li/Al LDH) have been investigated. Various methods that improve the performance of each sorbent in practical applications have been provided.
 

کلیدواژه‌ها [English]

  • Lithium
  • Adsorption
  • Lithium Ion Sieve
  • Adsorption Capacity
  • Brine
Hong, H. J., Park, I. S., Ryu, J., Ryu, T., Kim, B. G., Chung, K. S., "Immobilization of hydrogen manganese oxide (HMO) on alpha-alumina bead (AAB) to effective recovery of Li+ from seawater", Chem. Eng. J. J., 271, pp. 71–78, (2015).
[2]        Ryu, T., Shin, J., Lee, D., Ryu, J., Park, I., Hong, H., Kim, B., Lee, J., Huh, Y., Chung, K., "Improvement of lithium adsorption capacity of porous cylinder-type lithium manganese oxide through introduction of additive", Mater. Chem. Phys. J., 167, pp. 225–230, (2015).
[3]        Kim, J., Oh, S., Kwak, S. Y., "Magnetically separable magnetite–lithium manganese oxide nanocomposites as reusable lithium adsorbents in aqueous lithium resources", Chem. Eng. J. J., 281, pp. 541–548, (2015).
[4]        Wisniewska, M., Fijałkowska, G., Ostolska, I., Franus, W., Wiercinska, A. N., Tomaszewska, B., Goscianska, J., Wojcik, G., "Investigations of the possibility of lithium acquisition from geothermal water using natural and synthetic zeolites applying poly(acrylic acid) ", J. Clean. Prod., 195,
pp. 821–830, (2018).
[5]        Marthi, R., Smith, Y. R., "Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite", Hydrometallurgy., 186, pp. 115–125, (2019).
[6]        Gu, D., Sun, W., Han, G., Cui, Q., Wang, H., "Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine", Chem. Eng. J., 350,
pp. 474–483, (2018).
[7]        Xu, X., Qiu, F., Yang, D., Zheng, X., Wang, Y., Pan, J., Zhang, T., Xu, J., Li, C., "Dual-template crown ether-functionalized hierarchical porous silica: Preparation and application for adsorption of energy metal lithium", Appl Organometal Chem., 32,
pp. 1-11, (2017).
[8]        Jang, Y., Chung, E., "Adsorption of lithium from shale gas produced water using titanium based adsorbent", Ind. Eng. Chem. Res., pp. 8381–8387, (2018).
[9]        Honga, H.-J., Ryua, T., Parka, I., Kimb, M., Shina, J., Kima, B.-G., Chung, K.-S., "Highly porous and surface expanded spinel hydrogen manganese oxide (HMO)/Al2O3 composite for effective lithium (Li) recovery from seawater", Chem. Eng. J., 337,
pp. 455–461, (2018).
[10]      Moazeni, M., Hajipour, H., Askari, M., Nusheh, M., "Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents", Mater. Res. Bull. journa, 61, pp. 70–75, (2014).
 
 
[11]      Jiang, H., Yang, Y., Sun, S., Yu, J., "Adsorption of lithium ions on lithium-aluminum hydroxides: Equilibrium and kinetics", Can. Soc. Chem. Eng., 98(2), pp. 544-555, (2020).
[12]      Tian, L., Ma, W., Han, M., "Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide", Chem. Eng. J. J., 156, pp. 134–140, (2010).
[13]      Zhu, G., Wang, P., Qi, P., Gao, C., "Adsorption and desorption properties of Li+ on PVC-H1.6Mn1.6O4 lithium ion-sieve membrane", Chem. Eng. J. J., 235, pp. 340–348, (2014).
[14]      Xu, X., Chen, Y., Wan, P., Gasem, K., Wang, K., He, T., Adidharma, H., Fan, M., "Extraction of lithium with functionalized lithium ion-sieves", Prog. Mater. Sci., 84, pp. 276–313, (2016).
[15]      Wang, S., Zhang, M., Zhang, Y., Zhang, Y., Qiao, S., Zheng, S., "High adsorption performance of the
Mo-doped titanium oxide sieve for lithium ions", Hydrometallurgy, 187, pp. 30–37, (2019).
[16]      Han, Y., Kim, H., Park, J., "Millimeter-sized spherical ion-sieve foams with hierarchical pore structure for recovery of lithium from seawater", Chem. Eng. J. J., 210, pp. 482–489, (2012).
[17]      Wang, Y., Xu, J., Xu, X., Yang, D., Zheng, X., Pan, J., Zhang, T., Qiu, F., Li, C., "Mesoporous hollow silicon spheres modified with manganese ion sieve: Preparation and its application for adsorption of lithium and rubidium ions", Appl Organometal Chem., 32(3), p. e4182, (2018).
[18]      Zhang, Q. H., Li, S. P., Sun, S. Y., Yin, X. S., Yu, J. G., "Lithium selective adsorption on 1-D MnO 2 nanostructure ion-sieve", Adv. Powder Technol., 20, pp. 432–437, (2009).
[19]      Ji, Z., Yuan, J., Guo, X., Wang, J., Li, L., "A preliminary study on preparation of lithium ion-sieve flat sheet membrane", Appl. Mech. Mater., 161,
pp. 144–147, (2012).
[20]      Wang, L., Ma, W., Liu, R., Li, H. Y., Meng, C. G., "Correlation between Li+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor", Solid State Ionics, 177, pp. 1421–1428, (2006).
[21]      Xiao, G., Tong, K., Zhou, L., Xiao, J., Sun, S., Li, P., Yu, J., "Adsorption and Desorption Behavior of Lithium Ion in Spherical PVC−MnO2 Ion Sieve", Ind. Eng. Chem. Res., 51, pp. 10921−10929, (2012).
[22]      Chitrakar, R., Kanoh, H., Miyai, Y., Ooi, K., "A New Type of Manganese Oxide (MnO2â0.5H2O) Derived from Li1.6Mn1.6O4 and Its Lithium Ion-Sieve Properties", Chem. Mater., 12, pp. 3151–3157, (2000).
[23]      Chitrakar, R., Kanoh, H., Makita, Y., Miyai, Y., Ooi, K., "Synthesis of spinel-type lithium antimony manganese oxides and their Liz extraction/ion insertion reactions", R. Soc. Chem., 10,
pp. 2325–2329, (2000).
[24]      Ryu, T., Shin, J., Ryu, J., Park, I., Hong, H., Kim, B. G., Chung, K. S., "Preparation and Characterization of a Cylinder-Type Adsorbent for the Recovery of Lithium from Seawater", EXPRESS Regul. Artic., 54, pp. 1029–1033, (2013).
[25]      Zha, Q., Gao, J., Guo, Y., Cheng, F., "Facile Synthesisof Magnetically Recyclable Fe-doped Lithium Ion Sieve and Its Li Adsorption Performance Qian", Chem. Lett., 47, pp. 1308–1310, (2018).
[26]      Xue, F., Wang, B., Chen, M., Yi, C., Ju, S., Xing, W., "Fe3O4-doped lithium ion-sieves for lithium adsorption and magnetic separation", Sep. Purif. Technol., 228, pp.1383–5866, (2019).
[27]      Chen, M., Wu, R., Ju, S., Zhang, X., Xue, F., Xing, W., "Improved performance of Al doped LiMn2O4 ion-sieves for Li+ adsorption", Microporous Mesoporous Mater., 261, pp. 29–34, (2018).
[28]      Zhang, Q. H., Li, S. P., Sun, S.Y., Yin, X.S., Yu, J. G., "LiMn2O4 spinel direct synthesis and lithium ion selective adsorption Qin-Hui", Chem. Eng. Sci., 65, pp. 169–173, (2010).
[29]      Sun, S. Y., Song, X., Zhang, Q. H., Wang, J., Yu, J. G., "Lithium extraction/insertion process on cubic Li-Mn-O precursors with different Li/Mn ratio and morphology", Sci. Media, 17, pp. 881–887, (2011).
[30]      Ma, L. W., Chen, B. Z., Chen, Y., Shi, X. C., "Preparation, characterization and adsorptive properties of foam-type lithium adsorbent", Microporous Mesoporous Mater., 142, pp. 147–153, (2011).
[31]      Li, X. J., Ying, S. S., Xingfu, S., Ping, L., Guo, Y. J., "Lithium ion recovery from brine using granulated polyacrylamide–MnO2 ion-sieve", Chem. Eng. J., 279, pp. 659–666, (2015).
[32]      Xu, N., Li, S., Guo, M., Qian, Z., Li, W., Liu, Z., "Synthesis of H4Mn5O12 Nanotubes Lithium Ion Sieve and Its Adsorption Properties for Li+ from Aqueous Solution", Chem. Sel., 4, pp. 9562 –9569, (2019).
[33]      Shi, X., Zhang, Z., Zhou, D., Zhang, L., Chen, B., Yu, L., "Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties Xi-chang", Trans. Nonferrous Met. Soc. China, 23, pp. 253–259, (2013).
[34]      Lawagon, C. P., Nisola, G. M., Munb, J., Tron, A., Torrejos, R. C., Seo, J., Kim, H., Chung, W. Jin., "Adsorptive Li+ mining from liquid resources by H2TiO3, Equilibrium, kinetics, thermodynamics, and mechanisms", J. Ind. Eng. Chem., 35, pp. 347–356, (2016).
[35]      Zhang, L., Zhou, D., He, G., Yao, Q., Wang, F., Zhou, J., "Synthesis of H2TiO3–lithium adsorbent loaded on ceramic foams", Mater. Lett., 145,
pp. 351–354, (2015).
[36]      Zhang, L., Zhoua, D., Yaoa, Q., Zhoua, J., "Preparation of H2TiO3-lithium adsorbent by the
sol–gel process and its adsorption performance", Appl. Surf. Sci. J., 368, pp. 82–87, (2016).
[37]      Wang, S., Zheng, S., Wang, Z., Cui, W., Zhang, H., Yang, L., Zhang, Y., Li, P., "Superior lithium adsorption and required magnetic separation behavior of iron-doped lithium ion-sieves", Chem. Eng. J. J., 332, pp. 160–168, (2018).
[38]      Dong, D. Q., Wang, W. X., Wang, M. L., "Preparation of 3DON Li4Ti5O12 and Behavior of Li+ Ion Exchange", Appl. Mech. Mater., 618,
pp. 175–179, (2014).
[39]      Li, N., Gan, K., Lu, D., Zhang, J., Wang,
L., "Preparation of three-dimensional
macroporous–mesoporous lithium ion sieve with high Li+ adsorption capacity", Res Chem Intermed, 44,
pp. 1105–1117, (2018).
[40]      Li, N., Lu, D., Zhang, J., Wang, L., "Yolk-Shell Structured Composite for Fast and Selective Lithium Ion Sieving", J. Colloid Interface Sci., 520 pp. 33-40, (2018).
[41]      Wei, S., Wei, Y., Chen, T., Liu, C., Tang, Y., "Porous lithium ion sieves nanofibers, General synthesis strategy and highly selective recovery of lithium from brine water", Chem. Eng. J., 379, pp. 1-9, (2020).
[42]      Wang, S., Li, P., Cui, W., Zhang, H., Wang, H., Zhang, S., Zheng, Y., "Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application, excellent lithium adsorption Shulei", R. Soc. Chem., 104(6) pp. 102608-102616, (2016).
[43]      Kim, Y. S., Lee, H. M., Kim, J. H., Joob, J., Cheong, I. W., "Hydrogel adsorbents of poly(N- isopropylacrylamide-co-methacryloyloxymethyl-12-crown-4) for Li+ recovery prepared by droplet microfluidic", R. Soc. Chem., 5, pp. 10656-10661, (2015).
[44]      Luo, X., Guo, B., Luo, J., Deng, F., Zhang, S., Luo, S., Crittenden, J., "Recovery of Lithium from Wastewater Using Development of Li Ion- Imprinted Polymers", ACS Sustain. Chem. Eng, 3, pp. 460−467, (2015).
[45]      Yuan, C., Zhang, L., Li, H., Guo, R., Zhao, M., Lan, Y., "Highly Selective Lithium Ion Adsorbents: Polymeric Porous Microsphere with Crown Ether Groups", Trans. Tianjin Univ., 25, pp. 101-109, (2018).
[46]      Kamran, U., Heo, Y. J., Lee, J. W., Park, S. J., "Chemically modified activated carbon decorated with MnO2 nanocomposites for improving lithium adsorption and recovery from aqueous media", J. Alloys Compd., 794, pp. 425–434, (2019).
[47]      Jeong, J. M., Rhee, K. Y., Park, S. J., "Effect of chemical treatments on lithium recovery process of activated carbons", J. Ind. Eng. Chem., 27,
pp. 329–333, (2015).
[48]     فرهادی، م.، "بررسی جداسازی لیتیم به وسیله زئولیت کلینوپتیلولیت", دانشگاه مازندران، پایان نامه دوره کارشناسی ارشد در رشته مهندسی شیمی, (1396).
[49]      Li, L., Deshmane, V. G., Paranthaman, M. P., Bhave, R., Moyer, B. A., Harrison, S., "Lithium Recovery from Aqueous Resources and Batteries: A Brief Review", Johnson Matthey Technol. Rev., 62,
pp. 161–176, (2018).
[50]      Limjuco, L. A., Nisola, G. M., Lawagon, C. P., Lee, S. P., Seo, J. G., Kim, H., Chung, W. J., " H2TiO3 composite adsorbent foam for efficient and continuous recovery of Li+ from liquid resources", Col. Surf.: Physicochem. Eng. Asp., 504,
pp. 267-279, (2016).
[51]      Kim, S., Lee, J., Kang, J., Jo, K., Kim, S., Sung, Y. E., Yoon, J., "Lithium recovery from brine using a k-MnO2/activated carbon hybrid supercapacitor system", Chemosphere, 125, pp. 50–56, (2015).
[52]      Chung, W. J., Torrejos, R. E. C., Park, M. J., Vivas, E. L., Limjuco, L. A., Lawagon, C. P., Parohinog, K. J., Lee, S. P., Shon, H. K., Kim, H., Nisola, G. M., "Continuous lithium mining from aqueous resources by an adsorbent filter with a 3D polymeric nanofiber network infused with ion sieves Wook-Jin", Chem. Eng. J. J., 309, pp. 49–62, (2017).
[53]      Ohashi, F., Tai, Y., "Lithium adsorption from natural brine using surface-modified manganese oxide adsorbents", Mater. Lett., 251, pp. 214–217, (2019).
[54]      Jin, H. H., Park, I. S., Ryu, T., Ryu, J., Kim, B. G., Chung, K. S., "Granulation of Li1.33Mn1.67O4 (LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater", Chem. Eng. J., 234, pp. 16–22, (2013).
[55]      Sun, D., Meng, M., Yin, Y., Zhu, Y., Li, H., Yan, Y., "Highly selective, regenerated ion-sieve microfiltration porous membrane for targeted separation of Li+", J Porous Mater, 23,
pp. 1411-1419, (2016).
[56]      Umeno, A., Miyai, Y., Takagi, N., Chitrakar, R., Sakane, K., Ooi, K., "Preparation and Adsorptive Properties of Membrane-Type Adsorbents for Lithium Recovery from Seawater", Ind. Eng. Chem. Res., 41, pp. 4281–4287, (2002).
[57]      Park, M. J., Nisola, G., Beltran, A. B., Torrejos, R. C., Seo, J. G., Lee, S. P., Kim, H., Chung, W. J., "Recyclable composite nanofiber adsorbent for Li+ recovery from seawater de- salination retentate", Chem. Eng. J., 254, pp. 73-81, (2014).
 
[58]      Nisola, G. M., Limjuco, L. A., Vivas, E. L., Lawagon, C. P., Park, M. J., Shon, H. K., Mittal, N., Nah, I. W., Kim, H., Chung, W. J., "Macroporous flexible polyvinyl alcohol lithium adsorbent foam composite prepared via surfactant blending and cryo-desiccation Grace", Chem. Eng. J., 280, pp. 536–548, (2015).
[59]      Cui, J., Zhou, Z., Liu, S., Zhang, Y., Yan, L., Zhang, Q., Zhou, S., Yan, Y., Li, C., "Synthesis of cauliflower-like ion imprinted polymers for selective adsorption and separation of lithium ion", New J. Chem, 42, pp. 14502-14509, (2018).
[60]      Park, H., Singhal, N., Jho, E. H., "Lithium sorption properties of HMnO in seawater and wastewater", Water Res., 87, pp. 320–327, (2015).
 
[61]      He, G., Zhang, L., Zhou, D., Zou, Y., Wang, F., "The optimal condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design", Ionics, 21, pp. 2219-2226, (2015).
[62]      Wang, L., Meng, C. G., Ma, W., "Study on Li+ uptake by lithium ion-sieve via the pH technique", Colloids Surfaces A Physicochem. Eng. Asp., 334, pp. 34–39, (2009).
[63]      Liu, L., Zhang, H., Zhang, Y., Cao, D., Zhao, X., "Lithium extraction from seawater by manganese oxide ion sieve MnO2·0.5H2O", Colloids Surfaces A Physicochem. Eng. Asp., 468, pp. 280–284, (2015).