‌‌مروری بر سورفکتانت های‌ زیستی: مشخصه سازی و کاربردها

نوع مقاله: مقاله مروری

نویسندگان

1 گروه بیوتکنولوژی، دانشکده مهندسی شیمی، دانشگاه صنعتی امیرکبیر، تهران

2 گروه محیط زیست، پژوهشکده انرژی، پژوهشگاه مواد و انرژی، کرج، البرز

چکیده

در سال­های بازپسین، با صنعتی­شدن جوامع، افزایش جمعیت و آلودگی در سراسر دنیا، تمایل به استفاده از سورفکتانت‌های زیستی افزایش یافته­است. زیست‌توده­ها طیف وسیعی از ترکیبات فعال سطحی بهنام سورفکتانت‌های ‌زیستی را، که ترکیبات دوگانه‌‌دوستی با
سر آب‌دوست دم آب­گریز هستند تولید می­کنند. این ترکیبات به
طور عمده براساس وزن مولکولی، خواص فیزیکی- شیمیایی و منبع میکروبی طبقه­بندی می­شوند. ‌‌ سورفکتانت‌های ‌زیستی با وزن‌مولکولی کم، کشش سطحی آب/هوا یا آب/روغن را کاهش می‌دهند، درحالی‌که امولسیفایرهای زیستی با وزن‌مولکولی بالا، در تثبیت امولسیون‌ها مؤثر هستند. سورفکتانت‌های زیستی، باتوجه ‌به ویژگی­ها و برتری‌های بالقوۀ خود نسبت به انواع شیمیایی مانند سمیت کم، تجزیه­پذیری زیستی بالا، غلظت بحرانی مایسل کم و تحمل دما، قدرت یونی و pH، در صنایع مختلفی همچون صنعت نفت، غذایی، پزشکی، آرایشی، شوینده، کشاورزی و پالایش زیستی ‌محیط‌زیست کاربردهای گسترده­ای یافته­اند.
با‌ این‌حال کاربرد و تولید آن­ها در مقیاس صنعتی به
علت هزینۀ بالای تولید، محدود شده‌است. به‌همین دلیل صنایع و پژوهشگران در پی یافتن روش­هایی همچون استفاده از بسترهای ارزانقیمت مانند ملاس، روغن­های گیاهی و آب­پنیر هستند؛ تا بتوانند هزینۀ بالای تولید این محصولات سبز را در مقیاس صنعتی کاهشدهند. از این‌رو شناخت ویژگی­ها و مشخصه‌سازی سورفکتانت‌های زیستی از اهمیت ویژه­ای برخوردار است. در این بررسی به چند جنبۀ مهم ‌ سورفکتانت‌های زیستی همچون طبقه­بندی­، ویژگی‌ها، عوامل مؤثر بر تولید، شاخصهای ارزیابی و روش‌های آزمون و کاربرد آن­ها در صنایع مختلف پرداخته­شده­است.

کلیدواژه‌ها


چالکش­امیری، م.، "مواد فعال سطحی به انضمام کف و ضد کف"، انتشارات ارکان دانش، (1387).
[2]       Anvari, S., Hajfarajollah, H., Mokhtarani, B., Noghabi, K. A., "Physiochemical and thermodynamic characterization of lipopeptide biosurfactant secreted by Bacillus tequilensis HK01", RSC Advances, 5,
pp. 91836-91845, (2015).
]3[      ابراهیمی، س.، جلیلی، ح.، "مروری بر بیوسورفکتانت‌ها و توانایی جایگزینی این مولکول‌های زیستی با سوررفکتانت‌های سنتزی متداول"، سومین همایش ملی فن‌آوری‌های نوین شیمی و مهندسی شیمی، 30و31 اردیبهشت1393.
[4]       Liu, K., Sun, Y., Cao, M., Wang, J., Lu, J. R., Xu, H., "Rational design, properties and applications of biosurfactants: a short review of recent advances", Current Opinion in Colloid & Interface Science, 45, pp. 57-67, (2020).
[5]       Lngle, A. P., Chandel, A. K., daSilva, S. S., "Lignocellulosic Biorefining Technologies", John Wiley & Sons, pp. 161-170, (2020).
[6]       Jahan, R., Bodratti, A. M., Tsianou, M., Alexandridis, P., "Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications", Advances in Colloid and Interface Science, 275, pp. 102061-102083, (2020).
[7]       Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Ramu Dirisala, V., Kodali, V. P., "Role of biosurfactants in bioremediation of oil pollution-a review", Petroleum, 4, pp. 241-249, (2018).
[8]       Saimmai, A., Riansa-ngawong, W., Maneerat, S., Dikit, P., "Application of biosurfactants in the medical field", Walailak Journal of Science and Technology, 17, pp. 154-166, (2020).‏
[9]       Drakontis, C. E., Amin, S., "Biosurfactants: Formulations, Properties, and Applications", Current Opinion in Colloid & Interface Science, (2020).
[10]     Bhuvaneswari, M., Sivagurunathan, P., Uma, C., "Isolation and characterization of biosurfactant producing pseudomonas SP isolated from porto novo coastal region-Cuddalore", INDO American Journal of Pharmaceutical Science, 3, pp. 1399-1403, (2016). ‏
[11]     Leite, G. G., Figueirôa, J. V., Almeida, T. C., Valões, J. L., Marques, W. F., Duarte, M. D., Gorlach‐Lira, K., "Production of rhamnolipids and diesel oil degradation by bacteria isolated from soil contaminated by petroleum", Biotechnology Progress, 32, pp. 262-270, (2016). ‏
[12]     Long, X., Sha, R., Meng, Q., Zhang, G., "Mechanism study on the severe foaming of rhamnolipid in fermentation", Journal of Surfactants and Detergents, 19, pp. 833-840, (2016).
[13]     Malik, S., Ghosh, A., Saha, R., Saha, B., "A Review on Natural Surfactants", Royal Society of Chemistry, 5, pp. 65757-65767, (2015).
[14]     Jadhav, V. V., Yadav, A., Shouche, Y. S., Aphale, S., Moghe, A., Pillai, S., Bhadekar, R. K., "Studies on biosurfactant from Oceanobacillus sp. BRI 10 isolated from antarctic sea water", Desalination, 318, pp. 64–71, (2013).
[15]     Yan, P., Lu, M., Yang, Q., Zhang, H. L., Zhang, Z. Z., Chen, R., "Oil recovery from refinery oily sludge using a rhamnolipid biosurfactant-producing Pseudomonas", Bioresource Technology, 116, pp. 24-28, (2012).
[16]     Ramírez, I. M., Tsaousi, K., Rudden, M., Marchant, R., Alameda, E. J., Román, M. G., Banat, I. M., "Rhamnolipid and surfactin production from olive oil mill waste as sole carbon source", Bioresource Technology, 198, pp. 231–236, (2015).
[17]     Whang, L. M., Liu, P. W. G., Ma, C. C., Cheng, S. S., "Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel contaminated water and soil", Journal of Hazardous Materials, 151, pp. 155–163, (2008).
[18]     Souza, E. C., Vessoni-Penna, T. C., de Souza Oliveira, R. P., "Biosurfactant-enhanced hydrocarbon bioremediation: an overview", International Biodeterioration & Biodegradation, 89, pp. 88–94, (2014).
[19]     Varjani, S. J., Upasani, V. N., "Core flood study for enhanced oil recovery through ex-situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514", Bioresource Technology, 220,
pp. 175–182, (2016).
[20]     Das, K., Mukherjee, A. K., "Characterization of biochemical properties and biological activities of biosurfactants produced by Pseudomonas aeruginosa mucoid and non-mucoid strains isolated from hydrocarbon-contaminated soil samples", Applied Microbiology & Biotechnology, 69, pp. 192–199, (2005).
[21]     Zhao, F., Zhou, J. D., Ma, F., Shi, R. J., Han, S. Q., Zhang, J., Zhang, Y., "Simultaneous inhibition of sulfate-reducing bacteria, removal of H2S and production of rhamnolipid by recombinant Pseudomonas stutzeri Rhl: applications for microbial enhanced oil recovery", Bioresource Technology, 207, pp. 24–30, (2016).
 
 
 
 
[22]     Banat, I. M., Franzetti, A., Gandolfi, I., Bestetti, G., Martinotti, M. G., Fracchia, L., Marchant, R., "Microbial biosurfactants production, applications and future potential", Applied Microbiology and Biotechnology, 87, pp. 427-444, (2010).
[23]     Mujumdar, S., Joshi, P., Karve, N., "Production, characterization, and applications of bioemulsifiers (BE) and biosurfactants (BS) produced by Acinetobacter spp.: A review", Journal of Basic Microbiology, 59, pp. 277-287, (2019). ‏
[24]     Sahebnazar, Z., Mowla, D., Karimi, G., "Enhancement of Pseudomonas Aeruginosa growth and Rhamnolipid Production using iron-silica nanoparticles in low-cost medium", Journal of Nanostructures, 8, pp. 1-10, (2018).
[25]     Campos, J. M., Montenegro Stamford, T. L., Sarubbo, L. A., de Luna, J. M., Rufino, R. D., Banat, I. M., "Microbial biosurfactants as additives for food industries", Biotechnology Progress, 29,
pp. 1097-1108, (2013).
[26]     Varjani, S. J., Upasani, V. N., "Critical review on biosurfactant analysis, purification and characterization using rhamnolipid as a model biosurfactant", Bioresource Technology, 232,
pp. 389–397, (2017).
[27]     Markande, A. R., Acharya, S. R., Nerurkar, A. S., "Physicochemical characterization of thermostable glycoprotein bioemulsifier from Solibacillus silvestris AM1", Process Biochemistry, 48, pp. 1800–1808, (2013).
[28]     Varjani, S. J., Rana, D. P., Bateja, S., Sharma, M. C., Upasani, V. N., "Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India", Intentional Journal of Innovative Research in Science Engineer Technology, 3, pp. 9205–9213, (2014).
[29]     Zinicovscaia, I., Iushin, N., Gundorina, S., Demcak, S., Frontaseva, M., Kamanina, I., "Biosorption of nickel from model solutions and electroplating industrial effluenusing cyanobacterium arthrospira platensis", Desalination and Water Treatment, 120, pp. 158-165, (2018). ‏
[30]     Varadavenkatesan, T., Murty, V. R., "Production of a lipopeptide biosurfactant by a novel Bacillus sp. and its applicability to enhanced oil recovery", ISRN microbiology, pp. 1-8, (2013).
[31]     McGenity, T., Van Der Meer, J. R., de Lorenzo, V., "Handbook of Hydrocarbon and Lipid Microbiology", Springer, 5, pp. 3687-3724, (2010).
[32]     Mekala, S., Peters, K. C., Singer, K. D., Gross, R. A., "Biosurfactant-functionalized porphyrin chromophore that forms J-aggregates", Organic & Biomolecular Chemistry, 16, pp. 7178-7190, (2018).
[33]     Soberón-Chávez, G., "Biosurfactants: from Genes to Applications", Springer Science & Business Media,
p. 20, (2010).
[34]     Sineriz, F., Hommel, R. K., Kleber, H. P., "Production of biosurfactants", Biotechnology, 5, pp. 1-9, (2001).
[35]     Ron, E. Z., Rosenberg, E. "Natural roles of biosurfactants: Minireview", Environmental Microbiology, 3, pp. 229-236, (2001).
[36]     Sharma, S. K., Mulligan, C. N., Mudhoo, A., "Biosurfactants: Research Trends and Applications", CRC press, (2014).
[37]     Md, F., "Biosurfactant: production and application", Journal of Petroleum & Environmental Biotechnology, 3, pp. 124-129, (2012).
[38]     Cheng, Y., He, H., Yang, C., Zeng, G., Li, X., Chen, H., Yu, G., "Challenges and solutions for biofiltration of hydrophobic volatile organic compounds", Biotechnology Advances, 34, pp. 1091-1102, (2016).
[39]     Santos, D. K. F., Meira, H. M., Rufino, R. D., Luna, J. M., Sarubbo, L. A., "Biosurfactant production from Candida lipolytica in bioreactor and evaluation of its toxicity for application as a bioremediation agent", Process Biochemistry, 54, pp. 20-27, (2017). ‏
[40]     Hirata, Y., Ryu, M., Oda, Y., Igarashi, K., Nagatsuka, A., Furuta, T., Sugiura, M., "Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, as biodegradable low-foaming surfactants", Journal of Bioscience and Bioengineering, 108, pp. 142-146, (2009). ‏
[41]     Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A., Sarubbo, L. A., "Biosurfactants: multifunctional biomolecules of the 21st century", International journal of molecular sciences, 17,
pp. 401- 432, (2016).
[42]     Lotfabad, T. B., Shourian, M., Roostaazad, R., Najafabadi, A. R., Adelzadeh, M. R., Noghabi, K. A., "An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran", Colloids and Surfaces B: Biointerfaces, 69, pp. 183-193, (2009). ‏
[43]     Almeida, D. G., Brasileiro, P. P. F., Rufino, R. D., de Luna, J. M., Sarubbo, L. A., "Production, formulation and cost estimation of a commercial biosurfactant", Biodegradation, 30, pp. 191-201, (2019). ‏
[44]     Bhardwaj, G., Cameotra, S. S., Chopra, H. K., "Utilization of oleo-chemical industry by-products for biosurfactant production", AMB Express, 3,
pp. 1186-1190, (2013).
[45]     Varjani, S.J., "Microbial degradation of petroleum hydrocarbons", Bioresource Technology, 223,
pp. 277–286, (2017).
[46]     Eraqi, W. A., Yassin, A. S., Ali, A. E., Amin, M. A., "Utilization of crude glycerol as a substrate for the production of rhamnolipid by Pseudomonas aeruginosa", Biotechnology Research International, pp. 203-210, (2016).
[47]     Marcelino, P. R. F., da Silva, V. L., Philippini, R. R., Von Zuben, C. J., Contiero, J., dos Santos, J. C., da Silva, S. S., "Biosurfactants produced by Scheffersomyces stipitis cultured in sugarcane bagasse hydrolysate as new green larvicides for the control of Aedes aegypti, a vector of neglected tropical diseases", PloS one, 12, pp. 125-134, (2017).‏
[48]     Marcelino, P. R. F., Peres, G. F. D., Terán-Hilares, R., Pagnocca, F. C., Rosa, C. A., Lacerda, T. M., da Silva, S. S., "Biosurfactants production by yeasts using sugarcane bagasse hemicellulosic hydrolysate as new sustainable alternative for lignocellulosic biorefineries", Industrial Crops and Products, 129,
pp. 212-223, (2019).
[49]     Felix, A. K. N., Martins, J. J., Almeida, J. G. L., Giro, M. E. A., Cavalcante, K. F., Melo, V. M. M., de Santiago Aguiar, R. S., "Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil", Colloids and Surfaces B: Biointerfaces, 175,
pp. 256-263, (2019).
[50]     Maneerat, S., "Production of biosurfactants using substrates from renewable-resources", Songklanakarin Journal of Science and Technology, 27, pp. 675-683, (2005).
[51]     Makkar, R. S., Cameotra, S. S., Banat, I. M., "Advances in utilization of renewable substrates for biosurfactant production", AMB express, 1,
pp. 279-298, (2011).
[52]     Bakhshi, N., Soleimanian-Zad, S., Sheikh-Zeinoddin, M., "Dynamic surface tension measurement for the screening of biosurfactants produced by Lactobacillus plantarum subsp. plantarum PTCC 1896", Enzyme and Microbial Technology, 101, pp. 1-8, (2017). ‏
[53]     Sharma, S., Pandey, L. M., "Production of biosurfactant by Bacillus subtilis RSL-2 isolated from sludge and biosurfactant mediated degradation of oil", Bioresource Technology, 307, pp. 1-9, (2020).‏
[54]     Gámez, O. R., Rodríguez, A. A., Cadre, J. V., Gómez, J. G. C., "Screening and characterization of biosurfactant-producing bacteria isolated from contaminated soils with oily wastes" Journal of Environmantal Treatment Technology, 5, pp. 5-11, (2017).‏
[55]     Arifiyanto, A., Surtiningsih, T., Agustina, D., Alami, N. H., "Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region", Biocatalysis and Agricultural Biotechnology, 24, pp. 878-8181, (2020).
[56]     Souza, K. S. T., Gudiña, E. J., Azevedo, Z.,
de Freitas, V., Schwan, R. F., Rodrigues, L. R., Teixeira, J. A., "New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358", Colloids and Surfaces B: Biointerfaces, 154, pp. 373-382, (2017).
[57]     Suthar, M. P., Hajoori, M. A., Chaudhari, R. R., Desai, S. A., "Isolation, screening and characterization of potent biosurfactant producing bacteria from oil contaminated site", Bioscience Discovery, 8, pp. 375-381, (2017).‏
[58]     Yaraguppi, D. A., Bagewadi, Z. K., Muddapur, U. M., Mulla, S. I., "Response surface methodology-based optimization of biosurfactant production from isolated Bacillus aryabhattai strain ZDY2", Journal of Petroleum Exploration and Production Technology, 10, pp. 1-16, (2020).‏
 [59]    Bezza, F. A., Chirwa, E. M., "Improvement of biosurfactant production by microbial strains through supplementation of hydrophobic substrates", Chemical Engineering, 79, pp. 91-96, (2020).
[60]     Fracchia, L., Banat, J. J., Cavallo, M., Banat, I. M., "Potential therapeutic applications of microbial surface-activecompounds", AIMS Bioengineering, 2, pp. 144-162, (2015).
[61]     Tabatabaee, M. S., Assadi, M. M., "Vacuum distillation residue upgrading by an indigenous bacillus cereus", Journal of Environmental Health Science and Engineering, 11(18), pp. 1-7, (2013).
[62]     Silva, E. J., e Silva, N. M. P. R., Rufino, R. D., Luna, J. M., Silva, R. O., Sarubbo, L. A., "Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil", Colloids and Surfaces B: Biointerfaces, 117, pp. 36-41, (2014). ‏
[63]     Bezza, F. A., Chirwa, E. M. N., "Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2", Biochemical Engineering Journal, 101,
pp. 168-178, (2015).
[64]     Manif, I., Sahnoun, R., Ellouze-Chaabouni, S., Ghribi, D., "Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design", Environmental Science and Pollution Research, 21, pp. 851-861, (2014).
[65]     Amani, H., Kariminezhad, H., "Study on emulsification of crude oil in water using emulsan biosurfactant for pipeline transportation", Petroleum Science and Technology, 34, pp. 216-222, (2016).
[66]     Zhang, J., Xue, Q., Gao, H., Lai, H., Wang, P., "Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery", Microbial Cell Factories, 15, pp. 168-176, (2016).
[67]     Kiran, G. S., Priyadharsini, S., Sajayan, A., Priyadharsini, G. B., Poulose, N., Selvin, J., "Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry", Frontiers in Microbiology, 8,
pp. 1138-1145, (2017).
[68]     Patowary, R., Patowary, K., Kalita, M. C., Deka, S., "Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil", International Biodeterioration & biodegradation, 129, pp. 50-60, (2018).
[69]     Bouassida, M., Ghazala, I., Ellouze-Chaabouni, S., Ghribi, D., "Improved biosurfactant production by Bacillus Subtilis SPB1 mutant obtained by random mutagenesis and its application in enhanced oil recovery in sand system", Journal of Microbiology and Biotechnology, 28, pp. 95-104, (2018).
[70]     Liu, C., Zhang, Y., Sun, S., Huang, L., Yu, L., Liu, X., Zhang, Z., "Oil recovery from tank bottom sludge using rhamnolipids", Journal of Petroleum Science and Engineering, 170, pp. 14-20, (2018).
[71]     Rocha, V. A. L., de Castilho, L. V. A., de Castro, R. D. P. V., Teixeira, D. B., Magalhães, A. V., Gomez, J. G. C., Freire, D. M. G., "Comparison of mono‐rhamnolipids and di‐rhamnolipids on microbial enhanced oil recovery (MEOR) applications", Biotechnology Progress, p. 5, (2020).
[72]     Akbari, E., Beheshti‐Maal, K., Rasekh, B.,
Emami‐Karvani, Z., Omidi, M., "Isolation and identification of current biosurfactant‐producing microbacterium maritypicum ABR5 as a candidate for oily sludge recovery", Journal of Surfactants and Detergents, 23, pp. 137-144, (2020).
[73]     Almeida, D. G., Soares Da Silva, R. D. C. F., Luna, J. M., Rufino, R. D., Santos, V. A., Banat, I. M., Sarubbo, L. A., "Biosurfactants: promising molecules for petroleum biotechnology advances", Frontiers in Microbiology, 7, pp. 1-14, (2016).
[74]     Alvarez, V. M., Jurelevicius, D., Marques, J. M., de Souza, P. M., de Araújo, L. V., Barros, T. G., Seldin, L., "Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery", Colloids and Surfaces B: Biointerfaces, 136,
pp. 14-21, (2015).
[75]     Shibulal, B., Al-Bahry, S. N., Al-Wahaibi, Y. M., Elshafie, A. E., Al-Bemani, A. S., Joshi, S. J., "Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review", The Scientific World Journal, pp. 1-12, (2014).
[76]     Brown, L., "Microbial enhanced oil recovery (MEOR)", Current Opinion Microbiology, 13,
pp. 316–320, (2010).
[77]     Al-Sulaimani, H., Joshi, S., Al-Wahaibi, Y., Al-Bahry, S., Elshafie, A., Al-Bemani, A., "Microbial biotechnology for enhancing oil recovery: current developments and future prospects", Jornal of Biotechnology, Bioinformatics and Bioengineering, 1, pp. 147-158, (2011).
[78]     Farhadian, M., Vachelard, C., Duchez, D., Larroche, C., "In situ bioremediation of monoaromatic pollutants in groundwater: a review", Bioresource Technology, 9, pp. 5296–5308, (2008).
[79]     Lazar, I., Petrisor, I. G., Yen, T. F., "Microbial enhanced oil recovery (MEOR)", Petroleum Science and Technology, 25, pp. 1353-1366, (2007).
[80]     Salehizadeh, H., Mohammadizad, S., "Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis", Iranian Journal of Biotechnology, 7, pp. 216-223, (2009).
[81]     Li, Q., Kang, C., Wang, H., Liu, C., Zhang, C., "Application of microbial enhanced oil recovery technique to Daqing Oilfield", Biochemical Engineering Journal, 11, pp. 197-199, (2002).
[82]     Amani, H., Sarrafzadeh, M. H., Haghighi, M., Mehrnia, M. R., "Comparative study of biosurfactant producing bacteria in MEOR applications", Journal of Petroleum Science and Engineering, 75, pp. 209-214, (2010).
[83]     Sen, R., "Biosurfactants", Springer Sience, Business Media, LLC, p. 672, (2010).
[84]     Hu, G., Li, J., Zeng, G., "Recent development in the treatment of oily sludge from petroleum industry: a review", Journal of Hazardous Materials, 261,
pp. 470-490, (2013).
[85]     Cerón-Camacho, R., Martínez-Palou, R., Chávez-Gómez, B., Cuéllar, F., Bernal-Huicochea, C., Aburto, J., "Synergistic effect of Alkyl-O-glucoside and-cellobioside biosurfactants as effective emulsifiers of crude oil in water. A proposal for the transport of heavy crude oil by pipeline", Fuel, 110, pp. 310-317, (2013).
[86]     Leon, V., Kumar, M., "Biological upgrading of heavy crude oil", Biotechnology and Bioprocess Engineering, 10, pp. 471-481, (2005).
[87]     Sharma, V., Sharma, D., "Microbial Biosurfactants: Future Active Food Ingredients Microbial Bioprospecting for Sustainable Development", Springer, Singapore, pp. 265-276, (2018).
[88]     Pacwa-Płociniczak, M., Płaza, G. A., Piotrowska-Seget, Z., Cameotra, S. S., "Environmental applications of biosurfactants: recent advances", International Journal of Molecular Sciences, 12,
pp. 633-654, (2011).
[89]     Kumar, A., Sharma, S., "Microbes and Enzymes in Soil Health and Bioremediation", Springer,
pp. 353-366, (2019).
[90]     Sponza, D. T., Gök, O., "Effect of rhamnolipid on the aerobic removal of polyaromatic hydrocarbons (PAHs) and COD components from petrochemical wastewater", Bioresource Technology, 101,
pp. 914-924, (2010).
[91]     Bustamante, M., Duran, N., Diez, M. C., "Biosurfactants are useful tools for the bioremediation of contaminated soil: a review", Journal of Soil Science and Plant Nutrition, 12, pp. 667-687, (2012). ‏
[92]     Jiménez-Castañeda, M. E., Medina, D. I., "Use of surfactant-modified zeolites and clays for the removal of heavy metals from water", Water, 9, pp. 235-246, (2017).
[93]     Durval, I. B., Resende, A., Ostendorf, T., Oliveira, K. G., Luna, J., Rufino, R., Sarubbo, L., "Application of Bacillus Cereus Ucp 1615 biosurfactant for increase dispersion and removal of motor oil from contaminated seawater", Chemical Engineering Transactions, 74, pp. 319-324, (2019).‏
[94]     Naughton, P. J., Marchant, R., Naughton, V., Banat, I. M., "Microbial biosurfactants: current trends and applications in agricultural and biomedical industries", Journal of Applied Microbiology, 127,
pp. 12-28, (2019)
[95]     Sachdev, D. P., Cameotra, S. S., "Biosurfactants in agriculture", Applied Microbiology and Biotechnology, 97, pp. 1005-1016, (2013).
[96]     Sekhon, B. S., "Surfactants: pharmaceutical and medicinal aspects", Journal of Pharmaceutical Technology, Research and Management, 1, pp. 43-68, (2013).
 
[97]     Lourith, N., Kanlayavattanakul, M., "Natural surfactants used in cosmetics: glycolipids", International Journal of Cosmetic Science, 31,
pp. 255-261, (2009).
[98]     Kanlayavattanakul, M., Lourith, N., "Lipopeptides in cosmetics", International Gournal of Cosmetic Science, 32, pp. 1-8, (2010).
[99]     Ohadi, M., Shahravan, A., Dehghannoudeh, N., Eslaminejad, T., Banat, I. M., Dehghannoudeh, G., "Potential use of microbial surfactant in microemulsion drug delivery system: A systematic review", Drug Design, Development and Therapy, 14, pp. 541-552, (2020).
[100]   Bezerra, K. G. O., Rufino, R. D., Luna, J. M., Sarubbo, L. A., "Saponins and microbial biosurfactants: Potential raw materials for the formulation of cosmetics", Biotechnology Progress, 34, pp. 1482-1493, (2018). ‏
[101] Chong, H., Li, Q., "Microbial production of rhamnolipids: opportunities, challenges and strategies", Microbial Cell Factories, 16, pp. 137-149, (2017).