مروری بر کاتالیست‌های برپایۀ ایروژل‌های سیلیکایی

نویسندگان

1 دانشگاه زنجان

2 دانشگاه صنعتی سهند

چکیده

ایروژلهای سیلیکایی بهدلیل داشتن سطح ویژه و تخلخل بازِ بسیار بالابهعنوان
پایه کاتالیست­ها مورد توجه قرار گرفته­اند. در مقالۀ پیش رو کاتالیست­های بر پایۀ ایروژل‌های سیلیکایی مرور شده­اند. روش ساخت ایروژل­ها و روش­های گوناگون افزودن فاز فعال کاتالیستی در ماتریس ایروژلی توصیف شده
است. همنهشت ایروژل شامل تهیۀ ژل سیلیکا با فرایند سل-ژل و سپس خشککردن ژل با فنون ویژه برای رسیدن به ایروژل است. برای تهیۀ ایروژل کاتالیستی فاز دوم می­تواند پیش از تشکیل ژل و یا بعد از تشکیل ژل به آن افزوده شود. در روش اول محلول پیش­ماده­های فاز دوم و یا نانوذرات آن به
 سل سیلیکا افزوده می‌شود و فاز کاتالیستی همزمان با تشکیل ژل سیلیکا وارد ساختار آن می­شود. در روش دوم، فاز دوم بر روی ژل سیلیکا تلقیح می‌شود و یا به روش تلقیح یا نفوذ بخار بر روی ایروژل نشانده می­شود. مطالعات گوناگون انجام گرفته در زمینۀ ایروژل­های کاتالیستی گرداوری شده و واکنش مطالعه
شده به همراه روش خشک­سازی ایروژل،
پیش­مادۀ مورد استفاده برای سیلیکا و نیز روش تهیۀ کاتالیست در آنها ارائه شده
است. در پایان مقایسه­ای بین کاتالیست­های ایروژلی و زروژلی انجام شده‌است که مطالعات موجود نشان‌دهندۀ خواص مطلوبتر و عملکرد بسیار بهتر کاتالیست­های ایروژلی در واکنش­های گوناگون بودند. بهعنوان نمونه در مطالعات گوناگون، سطح ویژه تا 9/3 برابر بزرگتر، حجم تخلخل تا 23 برابر بزرگتر، میزان تبدیل واکنش­دهندۀ مد نظر تا 5/7 برابر بزرگتر، بازده محصول مد نظر تا 7 برابر بزرگتر و انتخاب­پذیری محصول دلخواه تا 4 برابر بیشتر برای کاتالیست ایروژلی نسبت به کاتالیست زروژلی گزارش شده است.

کلیدواژه‌ها


 

[1]        Casas, L., Roig, A., Rodriguez, E., Molins, E., Tejada, J., Sort, J., "Silica Aerogel-Iron Oxide Nanocomposites: Structural and Magnetic Properties", Journal of Non-Crystalline Solids, 285, pp. 37-43, (2001).

[2]        Fabrizioli, P., Burgi, T., Baiker, A., "Environmental Catalysis on Iron Oxide–Silica Aerogels: Selective Oxidation of NH3 and Reduction of NO by NH3", Journal of Catalysis, 206, pp. 143–154, (2002).

[3]        Dunn, B. C., Cole, P., Covington, D., Webster, M. C., Pugmire, R. J., Ernst, R. D., Eyring, E. M., Shah,N., Huffman, G. P., "Silica Aerogel Supported Catalysts for Fischer–Tropsch Synthesis", Applied Catalysis A: General, 278, pp. 233–23, (2005).

[4]        Wang, C. -T., Ro, S. -H., "Nanocluster Iron Oxide-Silica Aerogel Catalysts for Methanol Partial Oxidation", Applied Catalysis A: General, 285,
pp. 196–204, (2005).

[5]        Dominguez, M., Taboada, E., Molins, E., Llorca, J., "Co–SiO2 Aerogel-Coated Catalytic Walls for the Generation of Hydrogen", Catalysis Today, 138,
pp. 193-197,  (2008).

[6]        Gurav, J. L., Jung, I., -K., Park, H. -H., Kang, E. S., Nadargi, D. Y., "Silica Aerogel: Synthesis and Applications", Journal of Nanomaterials, 2010,
pp. 1-11, (2010).

[7]        Yousefi Amiri, T., Moghaddas, J. S., Rahmani Khajeh, S., "Silica Aerogel-Supported Copper Catalyst Prepared via Ambient Pressure Drying Process", Journal of Sol-Gel Science and Technology, 77, pp. 627-635, (2016).

 [8]       Aegerter, M. A., Leventis, N., Koebel, M. M., " Aerogels Handbook", New York, Springer, (2011).

[9]        Martinez, S., Meseguer, M., Casas, L., Rodriguez, E., Molins, E., Moreno-Manas, M., Roig, A.,Rosa MSebastián, R. M., Vallribera, A., "Silica Aerogel-Iron Oxide Nanocomposites: Recoverable Catalysts in Conjugate Additions and in the Biginelli Reaction", Tetrahedron, 59, pp. 1553–1556, (2003).

[10]      Zhao, Y., Yinghua, L., Qianyi, J., Bobo, Z., "Preparation of CuO-CoO-MnO/SiO2 Nanocomposite Aerogels as Catalyst Carriers and Their Application in the Synthesis of Diphenyl Carbonate", Journal of Wuhan University of  Technology-Mater. Sci.
Ed., 26, pp. 595-599, (2011).

[11]      Maleki, H. Hüsing, N., "Current Status, Opportunities and Challenges in Catalytic and Photocatalytic Applications of Aerogels: Environmental Protection Aspects", Applied Catalysis B: Environmental, 221, pp. 530-555, (2018).

[12]      "Sol-Gel Process", in Handbook of Heterogeneous Catalysis 1, Ertl G., Knozinger H., Schuth, F., Weitkamp, J., Eds., 2 ed: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 119-160, (2008).

[13]      Heinrichs, B., Lambert, S., Job, N., Pirard, J. -P., "Sol-Gel Synthesis of Supported Metals", in Catalyst Preparation: Science and Engineering, Regalbuto J., Ed., ed Boca Raton: CRC Press Taylor & Francis Group, pp. 163-208, (2007).

[14]      Shewale, P. M., Rao, A. V., Rao, A. P., "Effect of Different Trimethyl Silylating Agents on the Hydrophobic and Physical Properties of Silica Aerogels", Applied Surface Science, 254,
pp. 6902-6907, (2008).

[15]      Abdoli, S. M., Bastani, D., Bargozin, H., "Adsorption of Phenol Compounds by Nanoporous Silica Aerogel", Scientia Iranica, 22, pp. 992-1000 , (2015).

[16]      Roostaie, A., Bargozin, H., Mohammadiazar, S., Ehteshami, S., "Nanoporous Silica Aerogel Modified by Triethylchlorosilane as a New Sorbent for the Needle-Trap Extraction", Separation Eparation Science Plus, 1, pp. 76-82, (2018).

[17]      Aravind, P. R., Shajesh, P., Soraru, G. D., Warrier, K. G. K., "Ambient Pressure Drying: a Successful Approach for the Preparation of Silica and Silica Based Mixed Oxide Aerogels", Journal of Sol-Gel Science and Technology, 54, pp. 105–117, (2010).

[18]      Bhagat, S. D., Oh, C. -S., Kim, Y. -H., Ahn, Y. -S., Yeo, J. -G., "Methyltrimethoxysilane Based Monolithic Silica Aerogels via Ambient Pressure Drying", Microporous and Mesoporous Materials, 100, pp. 350-355, (2007).

 

 

 

 

[19]      Wu, G., Yu, Y., Cheng, X., Zhang, Y., "Preparation and Surface Modification Mechanism of Silica Aerogels via Ambient Pressure Drying", Materials Chemistry and Physics, 129, pp. 308-314, (2011).

[20]      Bargozin, H. Moghaddas, J. S., "Wettability Alteration with Silica Aerogel Nanodispersion", Journal of Dispersion Science and Technology, 34, pp. 1130-1138, (2013).

[21]      Bhagat, S. D., Kim, Y. -H., Ahn, Y. -S., Yeo, J. -G., "Textural Properties of Ambient Pressure Dried Water-Glass Based Silica Aerogel Beads: One Day Synthesis", Microporous and Mesoporous Materials, 96, pp. 237-244, (2006).

[22]      Popovici, M., Gich, M., Roig, A., Casas, L., Molins, E., Savii, C.,  Becherescu, D., Sort, J., Suriñach, S., Muñoz, J. S., Baró, M. D., Nogués, J., "Ultraporous Single Phase Iron Oxide-Silica Nanostructured Aerogels from Ferrous Precursors", Langmuir, 20,

pp. 1425-1429, (2004).

[23]      Popovici, M., Gigh, M., Savii, C., "Ultra-Light Sol-Gel Derived Magnetic Nanostructured Materials", Romanian Reports in Physics, 58, pp. 369–378, (2006).

[24]      Masoudian, S., Monfared, H. H., Aghaei, A., "Silica Aerogel–Iron Oxide Nanocomposites: Recoverable Catalysts for the Oxidation of Alcohols with Hydrogen Peroxide", Transition Metal Chemistry, 36, pp. 521-530, (2011).

[25]      Fabrizioli, P., Burgi, T., Burgener, M., Doorslaerb, S. V., Baiker, A., "Synthesis, Structural and Chemical Properties of Iron Oxide–Silica Aerogels", Journal of Materials Chemistry, 12, pp. 619–630, (2002).

[26]      Yousefi Amiri, T., Moghaddas, J. S., "Cogeled Copper–Silica Aerogel as a Catalyst in Hydrogen Production from Methanol Steam Reforming", International Journal of Hydrogen Energy, 40,

pp. 1472-1480, (2015).

[27]      Chorkendorff, I., Niemantsverdriet, J. W., Concepts of Modern Catalysis and Kinetics. Weinheim: WILEY-VCH, (2003).

[28]      Venkateswara Rao, A., Parvathy Rao, A., Kulkarni, M. M., "Influence of Gel Aging and Na2SiO3/H2O Molar Ratio on Monolithicity and Physical Properties of Water-Glass-Based Aerogels Dried at Atmospheric Pressure", Journal of Non-Crystalline Solids, 350, pp. 224-229, (2004).

[29]      Shi, F., Wang, L., Liu, J., "Synthesis and Characterization of Silica Aerogels by a Novel Fast Ambient Pressure Drying Process", Materials Letters, 60, pp. 3718-3722, (2006).

[30]      Bargozin, H., Amirkhani, L., Moghaddas, J. S., Ahadian, M. M., "Synthesis and Application of Silica Aerogel-MWCNT Nanocomposites for Adsorption of Organic Pollutants", Scientia Iranica, 17, pp. 122-132, (2010).

[31]      Ma, Z., Dunn, B. C., Turpin, G. C., Eyring, E. M., Ernst, R. D., Pugmire, R. J., "Solid State NMR Investigation of Silica Aerogel Supported Fischer–Tropsch Catalysts", Fuel Processing Technology, 88, pp. 29-33, (2007).

[32]      Zhao, Y., Liang, Y., Zhao, X., Li, H., Liu, X., "CuO-CoO-MnO/SiO2 Nanocomposite Aerogels as Catalysts Carrier and Effect of Process Factors on the Synthesis of Diphenyl Carbonate", Procedia Engineering, 27, pp. 1454-1461, (2012).

[33]      Zhao, Y. -Q., Liang, Y. -H., Zhao, X. -Z., Jia, Q. -Y., Li, H. -S., "Preparation and Microstructure of CuO-CoO-MnO/SiO2 Nanocomposite Aerogels and Xerogels as Catalyst Carriers", Progress in Natural Science: Materials International, 21, pp. 330-335, (2011).

[34]      Zhao, Y. -Q., Zhao, H. -L., Liang, Y. -H., Jia, Q. -Y., Zhang, B. -B., "Preparation and Characterization of CuO-CoO-MnO/SiO2 Nanocomposite Aerogels as Catalyst Carriers", Transactions of Nonferrous Metals Society of China, 20, pp. 1463-1469, (2010).

[35]      Orlovic, A., Janackovic, D., Skala, D., "Alumina/Silica Aerogel with Zinc Chloride Alkylation Catalyst: Influence of Supercritical Drying Conditions and Aerogel Structure on Alkylation Catalytic Activity", Catalysis Communications, 3,

pp. 119–123, (2002).

[36]      Moussa, N., Fraile, J. M., Ghorbel, A., Mayoral, J. A., "Catalytic Oxidation of Thioanisole Ph–S–CH3 Over VOx/SiO2 and VO /Al O Catalysts Prepared by Sol–Gel Method", Journal of Molecular Catalysis A: General, 255, pp. 62–68, (2006).

[37]      Moussa, N., Ghorbel, A., "UV–vis–DR Study of VOx/SiO2 Catalysts Prepared by Sol–Gel Method", Applied Surface Science, 225, pp. 2270–2275, (2008).

[38]      Choi, J., Shin, C. B., Suh, D. J., "Co-Promoted Pt Catalysts Supported on Silica Aerogel for Preferential Oxidation of CO", Catalysis Communications, 9,

pp. 880–885, (2008).

[39]      Somma, F., Puppinato, A., Strukul, G., "Niobia–Silica Aerogel Mixed Oxide Catalysts: Effects of the Niobium Content, the Calcination Temperature and the Surface Hydrophilicity on the Epoxidation of Olefins with Hydrogen Peroxide", Applied Catalysis A: General, 309, pp. 115–121, (2006).

[40]      Somma, F., Canton, P., Strukul, G., "Effect of the Matrix in Niobium-Based Aerogel Catalysts for the Selective Oxidation of Olefins with Hydrogen Peroxide", Journal of Catalysis, 229, pp. 490-498, (2005).

[41]      Somma, F., Strukul, G., "Niobium Containing Micro-, Meso- and Macroporous Silica Materials as Catalysts for the Epoxidation of Olefins with Hydrogen Peroxide", Catalysis Letters, 107, pp. 73-82, (2006).

[42]      Tai, Y., Murakami, J., Tajiri, K., Ohashi, F., Daté, M., Tsubota, S., "Oxidation of Carbon Monoxide on Au Nanoparticles in Titania and Titania-Coated Silica Aerogels", Applied Catalysis A: General, 268,

pp. 183–187, (2004).

[43]      Tai ,Y., Tajiri, K., "Preparation, Thermal Stability, and CO Oxidation Activity of Highly Loaded Au/Titania-Coated Silica Aerogel Catalysts", Applied Catalysis A: General, 342, pp. 113–118, (2008).

[44]      Tai, Y., Yamaguchi, W., Tajiri, K., Kageyama, H., "Structures and CO Oxidation Activities of Size-Selected Au Nanoparticles in Mesoporous Titania-Coated Silica Aerogels", Applied Catalysis A: General, 364, pp. 143-149, (2009).

[45]      Ling, L. S., Hamdan, H., "Sulfated Silica–Titania Aerogel as a Bifunctional Oxidative and Acidic Catalyst in the Synthesis of Diols", Journal of Non-Crystalline Solids, 354, pp. 3939–3943, (2008).

[46]      Akkariv, R., Ghorbel, A., Essayem, N., Figueras, F., "Sulfated Zirconia Grafted on a Mesoporous Silica Aerogel: Influence of the Preparation Parameters on Textural, Structural and Catalytic Properties", Microporous and Mesoporous Materials, 111,

pp. 62–71, (2008).

[47]      Wang, Y., Wu, R., Zhao, Y., "Effect of ZrO2 Promoter on Structure and Catalytic Activity of the Ni/SiO2 Catalyst for CO Methanation in Hydrogen-Rich Gases", Catalysis Today, 158, pp. 470–474, (2010).

[48]      Dutoit, D. C. M., Reiche, M. A., Baiker, A., "Vanadia-Silica Aerogels Structure and Catalytic Properties in Selective Reductionof NO by NH3 " Applied Catalysis B: Environmental, 13, pp. 275-288, (1997).

[49]      Yingxin, L., Zuojun, W., Jixiang, C., Jiyan, Z., "Effects of Preparation Methods of Support on the Properties of Nickel Catalyst for Hydrogenation of m-Dinitrobenzene", Front. Chem. Eng. China, 1,

pp. 287–291, (2007).

[50]      Cutrufello, M. G., Rombi, E., Ferino, I., Loche, D., Corrias, A., Casula, M. F., "Ni-Based Xero- and Aerogels as Catalysts for Nitroxidation Processes", Journal of Sol-Gel Science and Technology, 60,

pp. 324–332, (2011).

[51]      Silva, J. B., Mohallem, N. D. S., "Nanocomposites Based on Nickel Ferrites Dispersed in sol–gel Silica Matrices", Journal of Sol-Gel Science and Technology, 55, pp. 159–169, (2011).

[52]      Lee, S. L., Nur, H., Hamdan, H., "Physical Properties and Bifunctional Catalytic Performance of Phosphate–Vanadium Impregnated Silica–Titania Aerogel", Catalysis Letter, 132, pp. 28–33, (2009).

[53]      Kim, W. -I., Suh, D. J., Park, T. -J., Hong, I. -K., "Photocatalytic Degradation of Methanol on Titania and Titania–Silica Aerogels Prepared by Non-alkoxide Sol–Gel Route", Topics in Catalysis, 44,

pp. 499-506, (2007).

[54]      Ingale, S. V., Wagh, P. B., Tripathi, A. K., Dudwadkar, A. S., Gamre, S. S., Rao, P. T., Singh, I. K., Gupta, S. C.",Photo Catalytic Oxidation of TNT Using TiO2-SiO2 Nano-Composite Aerogel Catalyst Prepared Using Sol–Gel Process", Journal of Sol-Gel Science and Technology, 58, pp. 682–688, (2011).

[55]      Beck, C., Mallat, T., Baiker, A., "Oxidation–Isomerization of an Olefin to Allylic Alcohol Using Titania–Silica and a Base Co-catalyst", Journal of Catalysis, 195, pp. 79–87, (2000).

[56]      Miller, J. B., Rankin, S. E., Ko, E. I., "Strategies in Controlling the Homogeneity of Zirconia-Silica Aerogels: Effect of Preparation on Textural and Catalytic Properties", Journal of Catalysis, 148,

pp. 673-682, (1994).

[57]      Zou, W., Gonzalez, R. D., "The Preparation of High-Surface-Area Pt/SiO2 Catalysts with Well-Defined Pore Size Distributions", Journal of Catalysis, 152, pp. 291-305, (1995).

[58]      Heinrichs, B., Noville, F., Pirard, J. -P., "Pd/SiO2-Cogelled Aerogel Catalysts and Impregnated Aerogel and Xerogel Catalysts: Synthesis and Characterization", Journal of Catalysis, 170,

pp. 366–376, (1997).

[59]      Cauqui, M. A., Calvino, J. J., Cifredo, G., Esquivias, L., Rodrlguez-Izquierdo, J. M., "Preparation of Rhodium Catalysts Dispersed on TiO2-SiO2 Aerogels " Journal of Non-Crystalline Solids, 148, pp. 758-763, (1992).

[60]      Klvana, D., Chaouki, J., Kusohorsky, D., Chavarie, C., "Catalytic Storage of Hydrogen: Hydrogenation of Toluene over a Nickel/Silica Aerogel Catalyst in Integral Flow Conditions " Applied Catalysis, 42,

pp. 121-130, (1988).

[61]      Maurer, S. M., Ko, E. I., "Synthesis and Characterization of Niobia-Containing Aerogels " Catalysis Letters, 12, pp. 231-238, (1992).

[62]      Owens, L., Tillotson, T. M., Hair, L. M., "Characterization of Vanadium/Silica and Copper/Silica Aerogel Catalysts " Journal of Non-Crystalline Solids, 186, pp. 177-183, (1995).

[63]      Hair, L. M., Owens, L., Tillotson, T., Froba, M., Wong, J., Thomas, G. J., Medlin, D. L., "Local, Nano- and Micro-Structures of Mixed Metal Oxide Aerogels for Catalyst Applications", Journal of Non-Crystalline Solids, 186, pp. 168-176, (1995).

[64]      Hutter, R., Mallat, T., Baiker, A., "Titania-Silica Mixed Oxides: III. Epoxidation of α-Isophorone with Hydroperoxides", Journal of Catalysis, 157,

pp. 665-675, (1995).

[65]      Dutoit, D. C. M., Schneider, M., Hutter, R., Baiker, A., "Titania–Silica Mixed Oxides: IV. Influence of Ti Content and Aging on Structural and Catalytic Properties of Aerogels", Journal of Catalysis, 161,

pp. 651-658, (1996).

[66]      Müller, C. A., Schneider, M. S., Mallat, T., Baiker, A., "Epoxidation of α-Isophorone with Amine-Modified Titania-Silica Hybrid Aerogel: Evidence for Ti-amine Interaction", Journal of Catalysis, 192,

pp. 448-451, (2000).

[67]      Hutter, R., Mallat, T., Peterhans, A., Baiker, A., "Epoxidation of β-Isophorone over a Titania–Silica Aerogel: Effect of Catalyst Pretreatments with Bases", Journal of Catalysis, 172, pp. 427-435, (1997).

[68]      Cao, S., Yeung, K. L., Yue, P. -L., "Preparation of Freestanding and Crack-Free Titania–Silica Aerogels and Their Performance for Gas Phase, Photocatalytic Oxidation of VOCs", Applied Catalysis B: Environmental, 68, pp. 99-108, (2006).

[69]      Cao, S., Yeung, K. L., Yue, P. -L., "An Investigation of Trichloroethylene Photocatalytic Oxidation on Mesoporous Titania-Silica Aerogel Catalysts", Applied Catalysis B: Environmental, 76, pp. 64-72, (2007).

[70]      Yoon, J. S., Lee, Y., Ryu, J., Kim, Y. -A., Park, E. D., Choi, J.-W., Ha, J. -M.,Suh, D. J.,Lee, H., "Production of High Carbon Number Hydrocarbon Fuels from a Lignin-Derived α-O-4 Phenolic Dimer, Benzyl Phenyl Ether, via Isomerization of Ether to Alcohols on High-Surface-Area Silica-Alumina Aerogel Catalysts", Applied Catalysis B: Environmental, 142-143, pp. 668-676, (2013).

[71]      Ryu, J., Kim, S. M., Choi, J. -W., Ha, J. -M., Ahn, D. J., Suh, D. J., Suh, Y. W., "Highly Durable Pt-Supported Niobia–Silica Aerogel Catalysts in the Aqueous-Phase Hydrodeoxygenation of 1-Propanol", Catalysis Communications, 29, pp. 40-47, (2012).

[72]      Wijaya, Y. P., Suh, D. J., Jae, J., "Production of Renewable p-Xylene from 2,5-Dimethylfuran via Diels–Alder Cycloaddition and Dehydrative Aromatization Reactions over Silica−Alumina Aerogel Catalysts", Catalysis Communications, 70, pp. 12-16, (2015).

[73]      Gisler, A., Bürgi, T., Baiker, A., "Epoxidation of Cyclic Allylic Alcohols on Titania–Silica Aerogels Studied by Attenuated Total Reflection Infrared and Modulation Spectroscopy", Journal of Catalysis, 222, pp. 461-469, (2004).

[74]      Peiris Weerasinghe, M. N., Klabunde, K. J., "Chromium Oxide Loaded Silica Aerogels: Novel Visible Light Photocatalytic Materials for Environmental Remediation", Journal of Photochemistry and Photobiology A: Chemistry, 254, pp. 62-70, (2013).

[75]      Bereczki, H. F., Daróczi, L., Fábián, I., Lázár, I., "Sol-gel Synthesis, Characterization and Catalytic Activity of Silica Aerogels Functionalized with Copper(II) Complexes of Cyclen and Cyclam", Microporous and Mesoporous Materials, 234,

pp. 392-400, (2016).

[76]      Kantam, M. L., Rao, B. P. C., Reddy, R. S., Sekhar, N. S., Sreedhar, B., Choudary, B. M., "Aerobic Epoxidation of Olefins Catalyzed by Co-SiO2 Nanocomposites", Journal of Molecular Catalysis A: Chemical, 272, pp. 1-5, (2007).

[77]      Hair, L. M., Coronado, P. R., Reynolds, J. G., "Mixed-metal Oxide Aerogels for Oxidation of Volatile Organic Compounds", Journal of Non-Crystalline Solids, 270, pp. 115-122, (2000).

[78]      Wang, C. -T., Willey, R. J., "Oxidation of Methanol over Iron Oxide Based Aerogels in Supercritical CO2", Journal of Non-Crystalline Solids, 225,

pp. 173-177, (1998).

[79]      Gisler, A., Müller, C. A., Schneider, M., Mallat, T., Baiker, A., "Synthesis of Organically Modified Titania-Silica Aerogels: Application for Epoxidation of Cyclohexenol", in Studies in Surface Science and Catalysis. 130, A. Corma, F. V. Melo, S. Mendioroz, and J. L. G. Fierro, Eds., ed: Elsevier, pp. 1637-1642, (2000).

[80]      Blanchard, F., Pommier, B., Reymond, J. P., Teichner, S. J., "New Fischer-Tropsch Catalysts Of The Aerogel Type", in Studies in Surface Science and Catalysis. 16, G. Poncelet, P. Grange, and P. A. Jacobs, Eds., ed: Elsevier, pp. 395-407, (1983).

[81]      Hutter, R., Mallat, T., Baiker, A., "Epoxidation of Cycloalkenones over Amorphous Titania-Silica Aerogels", in Studies in Surface Science and Catalysis. 108, H. U. Blaser, A. Baiker, and R. Prins, Eds., ed: Elsevier, pp. 329-336, (1997).

[82]      Wildberger, M. D., Mallat, T., Göbel, U., Baiker, A., "Oxidation of Butane and Butadiene to Furan over Vanadia–Silica Mixed Oxides", Applied Catalysis A: General, 168, pp. 69-80, (1998).

[83]      Malinowska, B., Walendziewski, J., Robert, D., Weber, J. V., Stolarski, M., "The Study of Photocatalytic Activities of Titania and Titania–Silica Aerogels", Applied Catalysis B: Environmental, 46, pp. 441-451, (2003).

[84]      Reiche, M. A., Ortelli, E.,, Baiker, A., "Vanadia Grafted on TiO2–SiO2, TiO2 and SiO2 Aerogels: Structural Properties and Catalytic Behaviour in Selective Reduction of NO by NH3", Applied Catalysis B: Environmental, 23, pp.187-203, (1999).

[85]      Dusi, M., Mallat, T., Baiker, A., "Chemo- and Diastereoselective Epoxidation of Allylic Alcohols with a Titania–Silica Aerogel", Journal of Molecular Catalysis A: Chemical, 138, pp. 15-23, (1999).

[86]      Yi, Z., Zhao, S., Zhang, J., She, M. F., Kong, L., Dumée, L. F., "Discrete Silver Nanoparticle Infusion Across Silica Aerogels Towards Versatile Catalytic Coatings for 4-Nitrophenol Reduction", Materials Chemistry and Physics, 223, pp. 404-40, (2019).

[87]      Lázár, I., Kalmár, J., Peter, A., Szilágyi, A., Győri, E., Ditrói, T., Fábián, I., "Photocatalytic Performance of Highly Amorphous Titania–Silica Aerogels with Mesopores: The Adverse Effect of the in Situ Adsorption of Some Organic Substrates During Photodegradation", Applied Surface Science, 356,

pp. 521-531, (2015).

[88]      Feng, X., Wang, L., Yao, X., Dong, H., Wang, X., Wang, Y., "Trace Water/Amino-Modified Silica Aerogel Catalytic System in the One-Pot Sequential Reaction of Benzaldehyde Dimethyl Acetal and Nitromethane", Catalysis Communications, 90,

pp. 106-110, (2017).

[89]      Sanz-Moral, L. M., Romero, A., Holz, F., Rueda, M., Navarrete, A., Martín, A., "Tuned Pd/SiO2 Aerogel Catalyst Prepared by Different Synthesis Techniques", Journal of the Taiwan Institute of Chemical Engineers, 65, pp. 515-521, (2016).

[90]      Long, T., Xu, Y., Lv, X., Ran, J., Yang, S., Xu, L., "Fabrication of the Annular Photocatalytic Reactor Using Large-Sized Freestanding Titania-Silica Monolithic Aerogel as the Catalyst for Degradation of Glyphosate", Materials & Design, 159, pp. 195-200, (2018).

[91]      Yousefi Amiri, T., Moghaddas, J. S., "Reaction Parameters Influence on the Catalytic Performance of Copper-Silica Aerogel in the Methanol Steam Reforming", Journal of Fuel Chemistry and Technology, 44, pp. 84-90, (2016).

 

[92]      Yousefi Amiri, T., Moghaddas, J. S., "Performance Evaluation of Cu-SiO2 Aerogel Catalyst in Methanol Steam Reforming", Iranian Journal of Chemical Engineering, 11, pp. 37-44, (2014).

[93]      Ferreira-Neto, E. P., Worsley, M. A., Rodrigues-Filho, U. P., "Towards thermally stable aerogel photocatalysts: TiCl4-based sol-gel routes for the design of nanostructured silica-titania aerogel with high photocatalytic activity and outstanding thermal stability", Journal of Environmental Chemical Engineering, 7, p. 103425, (2019).

[94]      Parale, V. G., Kim, T., Lee, K. Y., Phadtare, V. D., Dhavale, R. P., Jung, H. N. R., Park, H. H., "Hydrophobic TiO2–SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity", Ceramics International, 46,

pp. 4939-4946, (2020).

[95]      Posada, L. F., Carroll, M. K., Anderson, A. N., Bruno, B. A., "Inclusion of Ceria in Alumina- and Silica-Based Aerogels for Catalytic Applications", Journal of Supercritical Fluids, 152, p. 104536, (2019).