بررسی ساخت گرم‌کنندۀ چاپی با استفاده از نانوگرافیت و نانومس

نویسندگان

دانشگاه سمنان

چکیده

هدف از پژوهش پیش رو ساخت گرم­کنندۀ چاپی با استفاده از لایۀ رسانای نانوگرافیت و نانومس است. از ویژگی‌های این گرمکن پایداری بالا و مصرف انرژی پایین آن است که امکان ساخت گرمکن با تولید دمای بالا را فراهم می­کند. در این کار نانومس با استفاده از روش پلیول که در آن پلی­وینیل پیرولیدون به‌عنوان یک عامل حفاظتی است، تولید شد. با توجه به تجزیۀ تصویر ریزبین الکترونی روبشی(SEM) اندازۀ نانوذرات مس در محدودۀ 9±35 نانومتر تخمین زده شد. سپس با استفاده از تجزیۀ پراش اشعۀ ایکس(XRD) نانوذرات مس به‌عنوان مسی بلورین با ساختار فضای محوری مکعبی (FCC) تأیید شد.
در ادامه از گرافیت، 1- متیل-2- پیرولیدینون (به‌عنوان حلال لایه) و نانوذرات مس (برای بالابردن رسانایی لایه)، لایۀ رسانا با درصد وزنی 21/60 درصد تهیه‌شد. در پایان میزان مقاومت لایۀ رسانای چاپ‌شده بر روی سطح (شیشه) با ابعاد 1×10 سانتی‌متر، که به‌وسیلۀ آون در دمای 170 درجۀ سلسیوس خشک شده، 8/126 اهم تعیین شد و لایۀ ساخته‌شده به‌عنوان گرمکن چاپی به منبع تغذیه با ولتاژ 24 ولت متصل شد. دمای گرمکن در کمتر از یک‌دقیقه تا 200 درجۀ سلسیوس افزایش یافت. گرمکن تهیه‌شده با توجه به پایداری و گرمای یکنواختی که تولید می­کند قابلیت استفاده در صنایع الکترونیکی را دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Printed Heater Fabrication by Using Nano Graphite and Nano Copper

نویسندگان [English]

  • N. Tangaki
  • B. Khoshandam
University of Semnan
چکیده [English]

In this study the fabrication of printed heaters using conductive film prepared by nano graphite and nano copper was investigated. One of the features of this heater, is high stability and low energy consumption, which makes it possible to build a heater by producing high temperature. Initially, nano copper was produced by using the polyol method, in which polyvinylpyrrolidone was used as a protective agent. According to the scanning electron microscopy(SEM) analysis, the copper nanoparticles had a size range of about 35±9 nm. The copper particles were confirmed by XRD to be crystalline copper with a face-centered cubic (fcc) structure. In addition, graphite, 1-methyl-2-pyrrolidinone (as film solvent) and copper nanoparticles (to increase film conductivity), a conductive film with a weight percentage of 60.21% was prepared. The optimum film resistivity, which was printed as a conductive film on the glass surface with dimensions of 10 x 1 cm, and dried by the oven at 170 °C, was 126.8 ohms. Finally, when the film was connected to a 24 V supply, temperature of the film increased to200°C. Due to its stability and uniform heat, the heater can be used in the electronics industry.

کلیدواژه‌ها [English]

  • Copper Nanoparticle
  • Graphite
  • Printed Film
  • Polyol Method
Shin, K. Y., Hong, J. Y., Lee, S., Jang, J., "High electrothermal performance of expanded graphite nanoplatelet-based patch heater", Journal of Materials Chemistry, pp. 22.44, (2012).
[2]        Delhaes, Pierre. "Polymorphism of carbon", In Delhaes, Pierre (ed.). Graphite and precursors. Gordon & Breach, 1: pp. 1–24, (2000).
[3]        Pierson, Hugh O., "Handbook of carbon, graphite, diamond, and fullerenes, properties, processing, and applications", Noyes Publications, pp. 40–41, (2012). 
[4]        Tseng, S. F., Cheng, P. Y., Hsiao, W. T., Chen, M. F., Chung, C. K., Wang, P. H., "High-performance graphene-based heaters fabricated using maskless ultraviolet laser patterning", The International Journal of Advanced Manufacturing Technology, 102(9-12): pp. 3011-3020, (2019).
 
 
[5]        Shin, K. Y., Hong, J. Y., Lee, S., Jang, J., "High electrothermal performance of expanded graphite nanoplatelet-based patch heater", Journal of Materials Chemistry, 22(44): pp. 23404-23410, (2012).
[6]        Vertuccio, L., De Santis, F., Pantani, R., Lafdi, K., Guadagno, L., " Effective de-icing skin using graphene-based flexible heater", Composites Part BEngineering, 162: pp. 600-610, (2019).
[7]        Zeng, P., Tian, B., Tian, Q., Yao, W., Li, M., Wang, H., Wu, W., "Screen‐Printed, Low-Cost, and Patterned Flexible Heater Based on Ag Fractal Dendrites for Human Wearable Application", Advanced Materials Technologies, 4(3): p. 1800453. (2019).
[8]        Ferrier, G. G., Berzins, A. R., Davey, N. M., "Journal Archive", Platinum Metals Rev, 29(4): p. 175, (1985).
[9]        Fendler, J. H., "Atomic and molecular clusters in membrane mimetic chemistry",Chemical Reviews, 87(5): pp. 877-899, (1987).
[10]      Toshima, N., Yonezawa, T., "Bimetallic nanoparticles-novel materials for chemical and physical applications", New Journal of Chemistry, 22(11): pp. 1179-1201, (1998).
[11]      Brust, M., Kiely, Ch. J., "Some recent advances in nanostructure preparation from gold and silver particles: a short topical review", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 202(2-3): pp. 175-186, (2002).
[12]      Dhas, N., Arul, C., Paul, R., Aharon G., "Synthesis, characterization, and properties of metallic copper nanoparticles", Chemistry of materials, 10(5):
pp. 1446-1452, (1998).
[13]      Vitulli, G., Bernini, M., Bertozzi, S., Pitzalis, E., Salvadori, P., "Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen", Chemistry of materials, 14(3):
pp. 1183-1186, (2002).
[14]      Liu, Z., Yoshio, B., "A novel method for preparing copper nanorods and nanowires", Advanced Materials, 15(4): pp. 303-305, (2003).
[15]      Lee, Y. J., Kim, K., Shin, I. S., Shin, K. S., "ntioxidative metallic copper nanoparticles prepared by modified polyol method and their catalytic activities", Journal of Nanoparticle Research, 22(1): pp. 1-8. (2020).
[16]      Kim, D., Sunho, J., Jooho, M., "Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection", Nanotechnology 17(16): p. 4019, (2006).
[17]      Casella, I. G., Cataldi, T. R., Guerrieri, A., Desimoni, E., "Copper dispersed into polyaniline films as an amperometric sensor in alkaline solutions of amino acids and polyhydric compounds", Analytica Chimica Acta, 335(3): pp. 217-225, (1996).
[18]      Lisiecki, I., Pileni, M. P., "Synthesis of copper metallic clusters using reverse micelles as microreactors", Journal of the American Chemical Society, 115(10): pp. 3887-3896, (1993).
[19]      Pileni, M. P., Ninham, B. W., Gulik‐Krzywicki, T., Tanori, J., Lisiecki, I., Filankembo, A., "Direct relationship between shape and size of template and synthesis of copper metal particles", Advanced Materials, 11(16): pp. 1358-1362, (1999).
[20]      Qi, L., Jiming, M., Julin, Sh., "Synthesis of copper nanoparticles in nonionic water-in-oil microemulsions", Journal of colloid and interface science, 186(2): pp. 498-500, (1997).
[21]      Zinatloo-Ajabshir, S., Morassaei, M. S., Amiri, O., Salavati-Niasari, M., "Green synthesis of dysprosium stannate nanoparticles using Ficus carica extract as photocatalyst for the degradation of organic pollutants under visible irradiation", Ceramics International, 46(5): pp. 6095-6107, (2020).
[22]      Viau, G., Fievet-Vincent, F., Fievet, F. "Nucleation and growth of bimetallic CoNi and FeNi monodisperse particles prepared in polyols", Solid State Ionics, 84(3-4): pp. 259-270, (1996).
[23]      Zinatloo-Ajabshir, S., Salehi, Z., Amiri, O.,
Salavati-Niasari, M., "Simple fabrication of Pr2Ce2O7 nanostructures via a new and eco-friendly route; a potential electrochemical hydrogen storage material", Journal of Alloys and Compounds, 791:
pp. 792-799, (2019).
[24]      Fievet, F., Fievet-Vincent, F., Lagier, J. P., Dumont, B., Figlarz, M., "Controlled nucleation and growth of micrometre-size copper particles prepared by the polyol process", Journal of Materials Chemistry, 3(6): pp. 627-632, (1993).
[25]      Wu, S., "Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC", Materials letters, 61(4-5): pp. 1125-1129, (2007).
[26]      Zinatloo-Ajabshir, S., Mortazavi-Derazkola, S., Salavati-Niasari, M., "Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route", Separation and Purification Technology. 178: pp. 138-146, (2017).
[27]      Mahadevan, S., Chauhan, A. P. S., "Investigation of synthesized nanosized copper by polyol technique with graphite powder", Advanced Powder Technology, 27(4): pp. 1852-1856, (2016).
[28]      Blosi, M., Albonetti, S., Dondi, M., Martelli, C., Baldi, G., "Microwave-assisted polyol synthesis of Cu nanoparticles", Journal of Nanoparticle Research, 13(1): pp. 127-138 (2011).
[29]      Theivasanthi, T., Alagar., M., "X-ray diffraction studies of copper nanopowder", arXiv preprint arXiv: 1003.6068, (2010).