بررسی اثرهای زبری سطح انتقال حرارت در جوشش استخری در محلول استون- ایزوپروپانول,

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد کرمانشاه

2 دانشگاه رازی

3 دانشگاه صنعتی کرمانشاه

چکیده

در این‌پژوهش آزمایشگاهی، به بررسی اثرهای افزایش زبری سطح انتقال حرارت بر ضریب انتقال حرارت در جوشش استخری در محلول‌های دوجزئی استون و آیزوپروپانول با درصد حجمی ثابت (30% استون و 70% ایزوپروپانول و همچنین محلول 70% استون و 30% ایزوپروپانول) پرداخته شده‌است. سامانۀ آزمایشی از یک‌مکعب شیشه‌ای عایق‌بندی‌شده، یک‌استوانۀ فلزی از جنس برنز به‌عنوان سطح انتقال حرارت و یک لامپ مدادی وصل‌شده به اتوترانسفورماتور به‌عنوان منبع حرارتی تشکیل شده‌است. آزمایش­ها با چهار زبری مختلف (25/0، 34/0 ، 47/0 و 61/0 میکرومتر) سطح انتقال حرارت و گسترۀ شارهای حرارتی از 5/1 تا 88 کیلووات بر متر مربع و در شرایط هواکره‌ای انجام گرفته‌است. نتایج نشان داده‌است که با افزایش زبری سطح، تولید حباب در محلول بیشترشده و به‌دنبال آن آشفتگی افزایش یافته‌است؛ درنتیجه افزایش ضریب انتقال حرارت را به‌همراه داشته‌است. مدل بهینه با حداکثر همپوشانی با نتایج آزمایشگاهی این‌گونه مشخص گردید که در این‌میان مدل وینایاک )2004 (با خطای متوسط 15% کمترین خطا و مدل تام(1966) با خطای متوسط 27% بیشترین خطا را در میان دیگرمدل­ها دارا هستند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Roughness Effects of Heat Transfer Surface in the Pool Boiling in Acetone-Isopropanol Solution

نویسندگان [English]

  • M. Khooshehchin 1
  • S. Ovaysi 2
  • S. Fathi 3
1 Kermanshah Branch, Islamic Azad University
2 Razi University
3 Kermanshah University of Technology
چکیده [English]

In this laboratory study, the effect of increasing the surface roughness of heat transfer surface on the heat transfer coefficient in the pool boiling was investigated in two-part solutions of acetone and isopropanol with constant volume percent (% 30 acetone and% 70 isopropanol as well as solution of 70% acetone and 30% isopropanol). The experimental set up consists of an insulated glass cube, a bronze metal cylinder as a heat transfer surface, a pencil light bulb connected to auto transformer as a thermal source. The tests were carried out with four different roughness of the heat transfer surface. The range of heat fluxes is from 5.1 to 88 kW/m2 and in atmospheric conditions. The results show that by increasing roughness, the surface of the bubble production in the solution is increased, which leads to promote of mixing and, consequently, increase in the heat transfer coefficient. The optimal model with maximum overlapping with the experimental results revealed that the Vinayak model with a mean error of 15% has the least error, and Tome model with a mean error of 27% has the most error among other models.

کلیدواژه‌ها [English]

  • Boiling Heat Transfer Coefficient
  • Bubble Nucleation Sites
  • Binary Solution
  • Surface Roughness
Thome, J. R., "State-of-the-art overview of boiling and two-phase flows in microchannels", Heat transfer engineering, 27(9): pp. 4-19, )2006(.
[2]     Pop, E., "Energy dissipation and transport in nanoscale devices", Nano Research, 3(3): 147-169, )2010(.
[3]     Dhir, V., "Boiling heat transfer", Annual review of fluid mechanics, 30(1): pp. 365-401, )1998(.
[4]     Wang, J., Diao, M., Liu, X., "Numerical simulation of pool boiling with special heated surfaces", International Journal of Heat and Mass Transfer, 130: pp. 460-468, )2019(.
[5]     Liang, G., Mudawar, I., "Review of pool boiling enhancement by surface modification", International Journal of Heat and Mass Transfer, 128: pp. 892-933, )2019(.
[6] Emery, T. S., Jaikumar, A., Raghupathi, P., Joshi, I., Kandlikar, S. G., "Dual enhancement in HTC and CHF for external tubular pool boiling–A mechanistic perspective and future directions", International Journal of Heat and Mass Transfer, 122: pp. 1053-1073, )2018(.
[7]     Cao, Z., Wu, Z., Abbood, S., Sundén, B., "An analysis of pool boiling heat transfer on nanoparticle-coated surfaces", Energy Procedia, 158: pp. 5880-5887, )2019(.
[8]     Nimkar, N. D., Bhavnani, S. H., Jaeger, R. C., "Effect of nucleation site spacing on the pool boiling characteristics of a structured surface", International journal of heat and mass transfer, 49(17-18):
pp. 2829-2839, )2006(.
 
 
 
 
[9]     Chu, K. -H., Enright, R., Wang, E. N., "Structured surfaces for enhanced pool boiling heat transfer", Applied Physics Letters, 100(24): p. 241603, )2012(.
[10]   O'Hanley, H., Coyle, C., Buongiorno, J., McKrell, T., Hu, L. W., Rubner, M., Cohen, R., "Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux", Applied Physics Letters, 103(2): p. 024102, (2013).
[11]   Ahmad, S. W., Karayiannis, T. G., Kenning, D. B. R., Luke, A., "Compound effect of EHD and surface roughness in pool boiling and CHF with R-123", Applied Thermal Engineering, 31(11-12):
pp. 1994-2003, )2011(.
[12]   Wen, C. -D., Mudawar, I., "Emissivity characteristics of roughened aluminum alloy surfaces and assessment of multispectral radiation thermometry (MRT) emissivity models", International Journal of Heat and Mass Transfer, 47(17-18): pp. 3591-3605, )2004(.
[13]   Kim, S. H., Lee, G. C., Kang, J. Y., Moriyama, K., Kim, M. H., Park, H. S., "Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface", International Journal of Heat and Mass Transfer, 91: pp. 1140-1147, )2015(.
[14]   Kandlikar, S. G., "Enhanced Macroconvection Mechanism with Separate Liquid–Vapor Pathways to Improve Pool Boiling Performance", Journal of Heat Transfer, 139(5): p. 051501, )2017(.
[15]   Fan, L., -W., Li, J. -Q., Zhang, L., Yu, Z. -T., Cen, K. F., "Pool boiling heat transfer on a nanoscale roughness-enhanced superhydrophilic surface for accelerated quenching in water", Applied Thermal Engineering, 109: pp. 630-639, )2016(.
[16]   Kang, M. -G., "Effect of surface roughness on pool boiling heat transfer", International journal of heat and mass transfer, 43(22): pp. 4073-4085, )2000(.
[17]   Khooshechin, M., Fathi, S., Salimi, F., Ovaysi, S., "The influence of surfactant and ultrasonic processing on improvement of stability and heat transfer coefficient of CuO nanoparticles in the pool boiling", International Journal of Heat and Mass Transfer, 154: p. 119783, )2020(.
[18]   Khooshehchin, M., Mohammadidous, A., Ghotbinasab, S., "An optimization study on heat transfer of pool boiling exposed ultrasonic waves and particles addition", International Communications in Heat and Mass Transfer, 114: p. 104558, )2020(.
[19]   Azmi, W. H., Sharif, M. Z., Yusof, T. M., Mamat, R., Redhwan, A. A. M., "Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system–A review", Renewable and Sustainable Energy Reviews, 69: pp. 415-428, )2017(.
[20]   Kiseev, V., Sazhin, O., "Heat transfer enhancement in a loop thermosyphon using nanoparticles/water nanofluid", International Journal of Heat and Mass Transfer, 132: pp. 557-564, )2019(.
[21]   Faulkner, D., Khotan, M., Shekarriz, R., "Practical design of a 1000 W/cm/sup 2/cooling system [High Power Electronics]", in Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, (2003). IEEE.
[22]   Ebrahimi-Dehshali, M., Najm-Barzanji, S. Z., Hakkaki-Fard, A., "Pool boiling heat transfer enhancement by twisted-tape fins", Applied Thermal Engineering, 135: pp. 170-177, )2018(.
[23]   Sarafraz, M., Hormozi, F., Peyghambarzadeh, S., "Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces", Experimental Thermal and Fluid Science, 72: pp. 125-139, )2016(.
[24]   Kim, T., Kim, J. M., Kim, J. H., Park, S. C., Ahn, H. S., "Orientation effects on bubble dynamics and nucleate pool boiling heat transfer of graphene-modified surface", International Journal of Heat and Mass Transfer, 108: pp. 1393-1405, )2017(.
[25]   Manetti, L. L., Stephen, M. T., Beck, P. A., Cardoso, E. M., "Evaluation of the heat transfer enhancement during pool boiling using low concentrations of
Al2O3-water based nanofluid", Experimental Thermal and Fluid Science, 87: pp. 191-200, )2017(.
[26]   Palen, J., Small, W., "A new way to design kettle and internal reboilers", Hydrocarbon Processing, 43(11):
pp. 199-208, )1964(.
[27]   Stephan, K., "Calculation of heat transfer in evaporating binary liquid mixtures", Chem. Ing. Tech, 41:
pp. 409-417, )1969(.
[28]   Calus ,W., Rice, P., "Pool boiling—binary liquid mixtures", Chemical Engineering Science, 27(9):
pp. 1687-1697, )1972(.
[29]   Jungnickel, H., Wassilew, P., Kraus, W., "Investigations on the heat transfer of boiling binary refrigerant mixtures", International Journal of Refrigeration, 3(3): pp. 129-133, )1980(.
[30]   Schlunder, E. U. "Heat transfer in nucleate boiling of mixtures", in International Heat Transfer Conference Digital Library. Begel House Inc, )1986(.
[31]   Ünal, H., "Prediction of nucleate pool boiling heat transfer coefficients for binary mixtures", International journal of heat and mass transfer, 29(4): pp. 637-640, )1986(.
[32]   Thome, J., Shakir, S., "A new correlation for nucleate pool boiling of aqueous mixtures", in Heat transfer: Pittsburgh 1987, )1987(.
[33]   Fujita, Y., Tsutsui, M., "Convective flow boiling of binary mixtures in a vertical tube in convective Flow Boiling", Taylor & Francis, Washington, )1996).
[34]   Rao, G. V., Balakrishnan, A., "Heat transfer in nucleate pool boiling of multicomponent mixtures", Experimental Thermal and Fluid Science, 29(1):
pp. 87-103, )2004(.
[35]   Alavi, F. S., Seyf, K. A., Jami, A. M., "Pool boiling heat transfer in water/amines solutions", )2008(.
[36]   Fazel, S. A. A., "A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime", Heat and Mass Transfer, 53(9): pp. 2731-2744, )2017(.
[37]   Kovalev, S. A., Solov'ev, S. L., "Model of heat-transfer in the boiling of liquid at a porous surface", Teplofizika vysokikh temperatur, 22(6): pp. 1166-1171, )1984(.
[38]   Ivey, H., "Relationships between bubble frequency, departure diameter and rise velocity in nucleate boiling", International Journal of Heat and Mass Transfer, 10(8): pp. 1023-1040, )1967(.
[39]   Chen, X., Qiu, H., "Bubble dynamics and heat transfer on a wettability patterned surface", International Journal of Heat and Mass Transfer, 88: pp. 544-551, )2015(.
[40]   Khoshechin, M., Salimi, F., Jahangiri, A., "The influence of surface roughness and solution concentration on pool boiling process in Diethanolamine aqueous solution", Heat and Mass Transfer, 54(10): pp. 2963-2973,  2018(.
[41]   Pezo, M., Stevanovic, V., "Numerical prediction of critical heat flux in pool boiling with the two-fluid model", International Journal of Heat and Mass Transfer, 54(15-16): pp. 3296-3303, )2011(.
[42]   Pezo, M. L., Stevanovic, V. D., "Numerical prediction of nucleate pool boiling heat transfer coefficient under high heat fluxes", Thermal Science, 20: pp. S113-S123, )2016(.
[43]   Godinez, J. C., Fadda, D., Lee, J., You, S. M,. "Development of a stable Boehmite layer on aluminum surfaces for improved pool boiling heat transfer in water", Applied Thermal Engineering, 156:
pp. 541-549, (2019).