شبیه‌سازی رهش ویتامین B12 بر روی سامانه‌های دارورسانی هیدروژلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تهران

2 سازمان انرژی اتمی

چکیده

در این‌مطالعه، شبیه­سازی رهش داروی ویتامین B12 بر روی حامل هیدروژل هیدروکسی‌اتیل متاکریلات کو متیل متاکریلات با استفاده از نرم­افزار COMSOL
انجام گرفت. شاخص‌های سرعت حرکت مرز سامانه، غلظت اولیۀ داروی بارگذاری شده در حامل و ضخامت حامل هیدروژل در شبیه­سازی مورد بررسی قرارگرفت. نتایج به‌دست آمده از این شبیه­سازی نشان داد که برای کنترل بهینۀ رهش دارو از حامل در بدن، باید ضخامت حامل هیدروژل افزایش یابد و غلظت داروی بارگذاری‌شده در حامل بیشتر از
حد مورد نیاز بدن در یک‌بازۀ زمانی افزایش یابد و همچنین سرعت حرکت مرز سامانه متناسب با سرعت نفوذ آب در هیدروژل باشد. نتایج بهینۀ شبیه­سازی به‌ازای غلظت اولیۀ
mol/m3 1000ویتامین B12، ضخامت حامل هیدروژل mm 0004/0 و سرعت ثابت
m/s11-10×2 به‌دست آمد. در این‌مطالعه مدت زمان مورد نیاز برای رسیدن به
غلظت تعادلی برای حالت مرز ثابت سامانه
s 120000 به‌دست آمد، این نتیجه برای حرکت مرز با سرعت ثابت m/s11-10×2، s 210000 و برای حرکت مرز با سرعت
متغیر وابسته به زمان
s 210000 به‌دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation of Release of Vitamin B12 on Hydrogel Drug Delivery Systems

نویسندگان [English]

  • H. Moradi 1
  • P. Khadiv-Parsi 1
  • J. Karimi Sabet 2
  • M. Esmaeili 1
1 University of Tehran
2 Atomic Energy Organization
چکیده [English]

In this paper, the production and release of vitamin B12 on the hydrogel carrier of hydroxyethyl methacrylate polymer were simulated by using COMSOL software. Three parameters were investigated in the simulation: system boundary velocity, initial concentration of drug loaded on carrier, and thickness of the hydrogel membrane. The provided results of the simulation revealed that in order to control optimal drug release from carrier into body, the thickness of the hydrogel carrier should be increased; In addition, the concentration of drug on the carrier increased more than the desired amount of over a period of time; Also the boundary layer’s velocity of the system is proportional to the velocity of water infusion into the hydrogel. The optimal simulation outcomes were obtained by initial concentration of 1000 mole/m3 for vitamin B12, thickness of 0.0004 mm for hydrogel membrane, and constant velocity of 2×10-11 m/s. In this study, the time required to reach equilibrium concentration for the constant boundary of system is 120000 s, while this figure for a moving boundary with the constant velocity of 2×10-11 m/s is 210000 s, and also for a moving boundary with variable velocity which is depended on time is 210000 s.

کلیدواژه‌ها [English]

  • Release of Drug
  • Vitamin B12
  • Hydrogel Carriery Simulation
  • COMSOL

 

[1]          Hamidi, M., Azadi, A., Rafiei, P., "Hydrogel Nanoparticles in Drug Delivery", Advanced Drug Delivery Reviews, Vol. 60, pp. 1638-1649, (2008).
[2]          Amin, S., Rajabnezhad, S., Kohli, K., "Hydrogels as Potential Drug Delivery Systems", Scientific Research and Essay, Vol. 3, pp. 1175-1183, (2009).
[3]          Sahiner, N., Alb, A. M., Graves, R., Mandal, T., McPherson, G. L., Reed, W. F., John, V. T.,
"Core-shell Nanohydrogel Structures as Tunable Delivery Systems", Polymer, Vol. 48, pp. 704-711, (2007).
[4]          Lee, S. M., Yoo, E. S., Ghim, H. D., "Alginate Nanohydrogels Prepared by Emulsification-Diffusion Method", Macromolecular Research, Vol. 17,
pp. 168-173, (2009).
[5]          Ichikawa, H., Fukumori, Y., "Design of Nanohydrogel-Incorporated Microcapsules for Appropriate Controlled-Release of Peptide Drugs", Yakugaku Zasshi, Vol. 127, pp. 813-823, (2007).
 
[6]          Saaem, I., Papasotiropoulos, V., Wang, T., Soteropoulos, P., Libera, M., "Hydrogel-Based Protein Nanoarrays", Journal of Nanoscience and Nanotechnology, Vol. 7, pp. 1-10, (2007).
[7]          Toledo, L., Racine, L., Pérez, V., Henríquez, J. P., Auzely-Velty, R., Urbano, B. F., "Physical nanocomposite hydrogels filled with low concentrations of TiO2 nanoparticles: swelling, networks parameters and cell retention studies’, Mater. Sci. Eng., C. 92, pp. 769-778, (2018).
[8]          Hossieni-Aghdam, S. J., Foroughi-Nia, B.,
Zare-Akbari, Z., Mojarad-Jabali, S., Motasadizadeh, H., Farhadnejad, H., "Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and
HNT-AT nanohybrid", Int. J. Biol. Macromol., 107, pp. 2436-2449, (2018).
[9]          Christopher, S., Brazel Nikolaos, A., "Peppas, Modeling of drug release from swellable polymers", European Journal of Pharmaceutics and Biopharmaceutics. 49(1), pp. 47-58, (2000).
[10]        Lamberti, G., Galdi, I., Barba, A. A., "Controlled release from hydrogel-based solid martices.A model accounting for water up-take, swelling and erosion", International Journal of Pharmaceutics. 407(1-2),
pp. 78-86, (2011).
[11]        Nakielski, P., Kowalczyk, T., Kowalewski, T. A., "Modeling drug release from materials based on electrospun nanofibers", European Journal of Pharmaceutics and Biopharmaceutics. 67, pp. 97-137, (2013).
[12]        El-Sawy, N. M., Raafat, A. I., Mohamed, A. M., "Radiation development of pH-responsive (xanthan-acrylic acid)/MgO nanocomposite hydrogels for controlled delivery of methotrexate anticancer drug", International Journal of Biological Macromolecules, Volume 142, pp. 254-264, (2020).
[13]        Siepmann, J., Göpferich, A., "Mathematichal modeling of bioerodible polymeric drug delivery system", Advance Drug Deliver Reviews. 48,
pp. 229-247, (2001).
[14]        Runkana, V., Maheshwari, S., Cherlo, S., Thavva, R. S., "Modeling and Simulation of Drug Release Through Polymer Hydrogels", Indian Institude of Technology Delhi., pp. 6-10, (2013).