مروری بر فرایند تولید پوسال‌: چالش‌ها و چشم‌اندازها

نوع مقاله : مقاله مروری

نویسندگان

پژوهشگاه مواد و انرژی

چکیده

در سال‌های اخیر فرایند تولید پوسال (کمپوست) به یک فرایند دوستدار محیط‌زیست و جایگزینی پایدار برای مدیریت و بازیافت پسماند‌های آلی تبدیل شده‌است. هدف از این فرایند دست‌یافتن به محصولی آلی به نام پوسال است که به‌عنوان کود و اصلاح‌کنندۀ آلی در موارد کشاورزی کاربرد دارد. پوسال برتری‌های زیست‌محیطی، اقتصادی و کشاورزی بسیاری دارد که در این‌مطالعه به برجسته‌ترین آنها پرداخته می‌شود. عوامل تأثیرگذار بر فرایند از جمله دما، نسبت کربن به نیتروژن، مقدار رطوبت، میزان هوادهی و pH به تفصیل مرور شده‌اند. هم‌چنین، راهبردهایی برای بهسازی عملکرد فرایند مرور می‌شوند. پراکنش بو و زمان نسبتاً بالای مورد نیاز برای برداشت محصولی با کیفیت، از چالش‌های این فرایند به‌شمار می‌رود که رویکردهای پیشنهاد شده برای مواجهه و رفع این چالش‌ها در این مقاله ذکر می‌شوند. در پایان نیز نحوۀ استانداردسازی پوسال تولیدی بیان می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of Composting Process: Challenges and Perspectives

نویسندگان [English]

  • M. Ghasemizadeh
  • F. S. Halek
  • M. Dehghan
Materials and Energy Research Center
چکیده [English]

In recent years, the composting process has become an environmentally friendly process and a sustainable alternative to managing and recycling organic wastes. The purpose of this process is to achieve an organic product called "compost", which is used as an organic fertilizer and amendment in agricultural applications. Compost has many environmental, economic and agricultural benefits, the most prominent of which are discussed in this study. Factors affecting the process, including temperature, carbon to nitrogen ratio, moisture content, aeration rate and pH have been reviewed in detail. Strategies for improving process performance are also reviewed. Odor emission and the relatively high amount of time required to achieve quality product are among the challenges of this process, and the proposed approaches to encounter and address these challenges are reviewed in this paper. Finally, the standardization of the produced compost is explained.

کلیدواژه‌ها [English]

  • Waste Processing
  • Compost
  • Process Improvement
  • Organic Raw Materials؛ Standardization
Awasthi, M. K., Pandey, A. K., Khan, J., Bundela, P. S., Wong, Jonathan W. C., Selvam, A., "Evaluation of thermophilic fungal consortium for organic municipal solid waste composting", Bioresource Technology, Vol. 168, pp. 214-221, (2014).
[2]        Bekchanov, M., Mirzabaev, A., "Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health", Journal of Cleaner Production, 202:
pp. 1107-1119, (2018).
[3]        Saha, J. K., Panwar, N., Singh, M. V., "An assessment of municipal solid waste compost quality produced in different cities of India in the perspective of developing quality control indices", Waste Management, 30(2): pp. 192–201, (2010).
[4]        Sánchez, Ó. J., Ospina, D. A., Montoya, S., "Compost supplementation with nutrients and microorganisms in composting process", Waste Management, Vol. 69, pp. 136-153, (2017).
[5]        Pergola, M., Persiani, A., Palese, A. M., Di Meo, V., Pastore, V., D’Adamo, C., Celano, G., "Composting: The way for a sustainable agriculture", Applied Soil Ecology, 123:
pp. 744–750, (2018).
[6]        Wu, J., Zhao, Y., Zhao, W., Yang, T., Zhang, X., Xie, X., Cui, H., Wei, Z., "Effect of precursors combined with bacteria communities on the formation of humic substances during different material composting", Bioresource Technology, 226: pp. 191–199, (2017).
[7]        Kaza, S., Lisa, Y., Perinaz Bhada-Tata, Frank V. W., "What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050", Urban Development Series, (2018).
[8]        Cáceres, R., Malińska, K., Marfà, O., "Nitrification within composting: A review", Waste Management, 72: pp. 119-137, (2018).
[9]        Proietti, P., Calisti, R., Gigliotti, G., Nasini, L., Regni, L., Marchini, A.,"Composting optimization: Integrating cost analysis with the physical-chemical properties of materials to be composted", Journal of Cleaner Production, 137: pp. 1086-1099, (2016).
[10]      Oazana, S., Naor, M., Grinshpun, J., Halachmi, I., Raviv, M., Saadi, I., Avidov, R., Varma, V. S., Rosenfeld, L., Gross, A., Laor, Y., "A flexible control system designed for lab-scale simulations and optimization of composting processes", Waste Management, 72: pp. 150–160, (2018).
[11]      Li, Z., Lu, H., Ren, L., He, L., "Experimental and modeling approaches for food waste composting: A review", Chemosphere, 93: pp. 1247-1257, (2013).
[12]      Awasthi, M. K., Pandey, A. K., Bundela, P. S., Wong, J. W., Li, R., Zhang, Z., "Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium", Bioresource Technology, 213: pp. 181-189, (2016).
[13]      Waqas, M., Nizami, Dr. Abdul-Sattar, Aburizaiza, A., Barakat, M., Rashid, M., Ismail, I., "Optimizing the process of food waste compost and valorizing its applications: A case study of Saudi Arabia", Journal of Cleaner Production, 176: pp. 426-438, (2017).
[14]      Bernal, M. P., Alburquerque, J. A., Moral, R., "Composting of animal manures and chemical criteria for compost maturity assessment. A review", Bioresource Technology, 100 (22):
pp. 5444–5453, (2009).
[15]      Imbeah, M., "Composting piggery waste: a review", Bioresource Technology, 63:
pp. 197–203, (1998).
[16]      MacGregor, S. T., Miller, F. C., Psarianos, K. M., Finstein, M. S., "Composting process-control based on interaction between microbial heat output and temperature", Appl.Environ. Microbiol, 41: pp. 1321–1330, (1981).
[17]      Chang, R., Guo, Q., Chen, Q., Pilar Bernal, M., Wang, Q., Li, Y., "Effect of initial material bulk density and easily-degraded organic matter content on temperature changes during  composting of cucumber stalk", Journal of environmental scienece, 80: pp. 306-315, (2019).
[18]      Lester, J. N., Birkett, J. W., "Microbiology and Chemistry for Environmental Scientists and Engineers", E and FN SPON: p. 184–185, (1999).
[19]      Ravindran, B., Sekaran, G., "Bacterial composting of animal fleshing generated from tannery industries", Waste management, 30(12):
pp. 2622-2630, (2010).
[20]      Vuorinen, A. H., Saharinen, M. H., "Evolution of microbiological and chemical parameters during manure and straw co-composting in a drum composting system", Agriculture, ecosystems & environment, 66(1): pp. 19-29, (1997).
[21]      Varma, V. S., Kalamdhad, A. S., "Evolution of chemical and biological characterization during thermophilic composting of vegetable waste using rotary drum composter", International Journal of Environmental Science and Technology, 12(6), pp. 2015-2024, (2015).
[22]      Larney, F. J., Hao, X., "A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada", Bioresource Technology, 98: pp. 3221–3227, (2007).
[23]      Sadef, Y., Poulsen, T. G., Bester, K., "Impact of compost process temperature on organic
micro-pollutant degradation", Science of the Total Environment, 494: pp. 306–312, (2014).
[24]      Kuok, F., Mimoto, H., Nakasaki, K., "Effects of turning on the microbial consortia and the in situ temperature preferences of microorganisms in a laboratory-scale swine manure composting", Bioresource Technology, 116: pp. 421-427, (2012).
[25]      Yang, L., Zhang, S., Chen, Z., Wen, Q., Wang, Y., "Maturity and security assessment of
pilot-scale aerobic co-composting of penicillin fermentation dregs (PFDs) with sewage sludge", Bioresource Technology, 204: pp. 185–191, (2016).
[26]      Fourti, O., "The maturity tests during the composting of municipal solid wastes", Resources, Conservation & Recycling, 72:
pp. 43– 49, (2013).
[27]      Huang, G. F., Wong, J. W. C., Wu, Q. T., Nagar, B. B., "Effect of C/N on composting of pig manure with sawdust", Waste Management, 24(8): pp. 805-813, (2004).
[28]      Pace, M. G., Miller, B. E., Farrell-Poe, K. L., "The Composting Process", Utah State University Cooperative Extension: pp. 1-2, (1995).
[29]      Chen, H., Awasthi, M. K., Liu, T., Zhao, J., Ren, X., Wang, M., Duan, Y., Awasthi, S. K., Zhang, Z., "Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting", Bioresource Technology, 266: pp. 82-88, (2018).
[30]      Zhou, H., Zhao, Y., Yang, H., Zhu, L., Cai, B., Luo, S., Cao, J., Wei, Z., "Transformation of organic nitrogen fractions with different molecular weights during different organic wastes composting", Bioresource Technology, 262:
pp. 221–228, (2018).
[31]      Zhang, J., Zeng, G., Chen, Y., Yu, M., Yu, Z., Li, H., Yu, Y., Huang, H., "Effects of
physico-chemical parameters on the bacterial and fungal communities during agricultural waste composting", Bioresource Technology, 102(3): pp. 2950–2956, (2011).
[32]      Makan, A., Assobhei, O., Mountadar, M., "Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco", Iranian Journal of Environmental Health Science & Engineering, 10(1), (2013).
[33]      Petric, I., Šestan, A., Šestan, I., "Influence of initial moisture content on the composting of poultry manure with wheat straw", Biosystems Engineering 104(1): pp. 125-134, (2009).
[34]      Tchobanoglous, G., Theisen, H., Vigil, S. A., "Integrated solid waste management, Engineering principles and management issues", McGraw-Hill, (1993).
[35]      Liang, C., Das, K. C., McClendon, R. W., "The influence temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend", Bioresource Technology, 86(2): pp. 131–137, (2003).
[36]      Delgado-Rodríguez, M., Ruiz-Montoya, M., Giraldez, I., López, R., Madejón, E., Díaz, M. J., "Effect of aeration rate and moisture content on the emissions of selected VOCs during municipal solid waste composting", Journal of Material Cycles and Waste Management, 14(4):
pp. 371–378, (2012).
[37]      Wang, Y., Ai, P., Cao, H., Liu, Z., "Prediction of moisture variation during composting process: A comparison of mathematical models", Bioresource Technology, 193: pp. 200-205, (2015).
[38]      Ahn, H. K., Richard, T. L., Glanville, T. D., "Optimum moisture levels for biodegradation of mortality composting envelope materials", Waste Management, 28(8): pp. 1411–1416, (2008).
[39]      Leton, T. G., Stentiford, E. I., "Control of aeration in static pile composting", Waste Management and Research, 8(4): pp. 299-306, (1990).
[40]      Mejias, L., Komilis, D., Gea, T., Sánchez, A., "The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: Implications on the composting process", Waste Management, 65, pp. 22-28, (2017).
[41]      Ge, J., Huang, G., Huang, J., Zeng, J., Han, L., "Particle-scale modeling of oxygen uptake rate during pig manure-wheat straw composting: a new approach that considers surface convection", International Journal of Heat & Mass Transfer, 97: pp. 735–741, (2016).
[42]      Epstein, E., Wilson, G. B., Parr, J. F., "The Beltsville aerated pile method for composting sewage sludge", New Processes of Waste Water Treatment and Recovery. Soc. Chem. Ind. London, UK, pp.  201-213, (1978).
[43]      Yuan, J., Chadwick, D., Zhang, D., Li, G., Chen, S., Luo, W., Du, L., He, S., Peng, S., "Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting", Waste Management, 56: pp. 403-410, (2016).
[44]      Chowdhury, M. D., de Neergaard, A., Jensen, L. S., "Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting", Chemosphere, 97: pp. 16–25, (2014).
[45]      Rasapoor, M., Adl, M., Pourazizi, B., "Comparative evaluation of aeration methods for municipal solid waste composting from the perspective of resource management: A practical case study in Tehran, Iran", Journal of Environmental Management, 184: pp. 1-7, (2016).
[46]      Shimizu, N., Karyadi, J. N. W., Harano, M., Iwabuchi, K., Kimura, T., "Cattle manure composting in a packed-bed reactor with forced aeration strategy", Engineering in Agriculture, Environment and Food, 11(2): pp. 65-73, (2018).
[47]      Wang, X., Bai, Z., Yao, Y., Gao, B., Chadwick, D., Chen, Q., Hu, H., Ma, L., "Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential", Journal of Cleaner Production, 197:
pp. 448-457, (2018).
[48]      Cui, E., Wu, Y.,  Zuo, Y., Chen, H., "Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting", Bioresource Technology, 203:
pp. 11-17, (2016).
[49]      Nakasaki, K., Hirai, H., "Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting", Waste Management, 65: pp. 29-36, (2017).
[50]      Gage, J., "Checklist for odor management at compost facilities", Biocycle, 44(5): pp. 42-47, (2003).
[51]      Cheung, H. N. B., Huang, G. H., Yu, H., "Microbial-growth inhibition during composting of food waste: Effects of organic acids", Bioresource Technology, 101(15):
pp. 5925–5934, (2010).
[52]      Sundberg, C., Jönsson, H., "Process inhibition due to organic acids in fed-batch composting of food waste – influence of starting culture", Biodegradation, 16(3): pp. 205-213, (2005).
[53]      Beck-Friis, B., Smårs, S., Jönsson, H., Eklind, Y., Kirchmann, H., "Composting of source-separated household organics at different oxygen levels: gaining an understanding of the emission dynamics", Compost Science & Utilization, 11(1): pp. 41-50, (2003).
[54]      Nakasaki, K., Yaguchi, H., Sasaki, Y., Kubota, H., "Effects of pH control on composting of garbage", Waste Management and Research, 11(2): pp. 117–125, (1993).
[55]      Baptista, M., Antunes, F., Gonçalves, M. S., Morvan, B., Silveira, A., "Composting kinetics in full-scale mechanical–biological treatment plants", Waste Management, 30(10):
pp. 1908–1921, (2010).
[56]      Gutiérrez, M. C., Siles, J. A., Diz, J., Chica, A. F., Martín, M. A., "Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions", Waste Management, 59: pp. 48-58, (2017).
[57]      Chan, M. T., Selvam, A., Wong, J. W. C., "Reducing nitrogen loss and salinity during struvite’ food waste composting by zeolite amendment", Bioresource Technology 200 (9): pp. 838–844, (2015).
[58]      Petric, I., Selimbašić, V., "Development and validation of mathematical model for aerobic composting process", Chemical Engineering Journal, 139(2): pp. 304–317, (2008).
[59]      Qin, X., Huang, G., Zeng, G., Chakma, A., Xi, B., "A fuzzy composting process model",  Journal of the Air & Waste Management Association, 57(5): pp. 535-550, (2007).
[60]      Mason, I. G., "Mathematical modelling of the composting process: A review", Waste Management, 26(1): pp. 3-21, (2006).
[61]      Seki, H., "A new deterministic model for forced-aeration composting processes with batch operation", Transactions of the ASAE, 45(4):
pp. 1239-1250, (2002).
[62]      Petric, I., Avdihodžić, E., Ibrić, N., "Numerical simulation of composting process for mixture of organic fraction of municipal solid waste and poultry manure", Ecological Engineering, 75:
pp. 242-249, (2015).
[63]      Petric, I., Helić, A., Avdić, E. A., "Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure", Bioresource Technology, 117: pp. 107-116, (2012).
[64]      Reyes-Torres, M., Oviedo-Ocaña, E. R., Dominguez, I., Komilis, D., Sánchez, A. , "A systematic review on the composting of green waste: Feedstock quality and optimization strategies", Waste Management, 77: pp. 486-499, (2018).
]65[     یوسفی، ج.، یونسی، ح.،"بررسی تأثیر مقادیر مختلف خاک‌اره بر خصوصیات فیزیکی و شیمیایی کمپوست حاصل از پسماند شهری". علوم و تکنولوژی محیط زیست، 6 (شمارۀ ویژه 93).
]66[     یوسفی، ج.، یونسی، ح.، "کمپوست‌سازی همزمان پسماند شهری و خاک‌اره جهت حفظ رطوبت و جلوگیری از دست‌رفتن نیتروژن توده کمپوست"، علوم و تکنولوژی محیط زیست، 15 (4)، (1392).
[67]      Zhang, J., Lü, F., Shao, L., He, P., "The use of biochar-amended composting to improve the humification and degradation of sewage sludge", Bioresource Technology, 168: pp. 252-258, (2014).
[68]      López-Cano, I., Roig, A., Cayuela, M., Alburquerque, J. A., Sánchez-Monedero, M. A., "Biochar improves N cycling during composting of olive mill wastes and sheep manure", Waste Management, 49: pp. 553-559, (2016).
[69]      Jindo, K., Sonoki, T., Matsumoto, K., Canellas, L., Roig, A., Sanchez-Monedero, M. A., "Influence of biochar addition on the humic substances of composting manures", Waste Management, 49: pp. 545-552, (2016).
[70]      Sanchez-Monedero, M. A., Cayuela, M. L., Roig, A., Jindo, K., Mondini, C., Bolan, N., "Role of biochar as an additive in organic waste composting", Bioresource Technology, 247:
pp. 1155–1164, (2018).
[71]      Xiao, R., Awasthi, M. K., Li, R., Park, J., Pensky, S. M., Wang, Q., Wang, J. J., Zhang, Z., "Recent developments in biochar utilization as an additive in organic solid waste composting: A review", Bioresource Technology, 246: pp. 203-213, (2017).
[72]      Jain, M. S., Jambhulkar, R., Kalamdhad, A. S., "Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties", Bioresource Technology, 253:
pp. 204-213, (2018).
]73[     نجات‌زاده، ف.، بروجنی‌غلامی، ف.، "بررسی کارایی شاخص دینامیک میکروبی و فعالیتآنزیمی نسبت به روش‌های متداول و استفاده از آن به‌منظور تعیین میزان رسیدگی کود کمپوست". تازه‌های بیوتکنولوژی سلولی، مولکولی، 4 (13)، (1392).
[74]      Zhang, L., Sun, X., "Influence of bulking agents on physical, chemical, and microbiological properties during the two-stage composting of green waste", Waste Management, 48:
pp. 115-126, (2016).
[75]      Gabhane, J., William, S. P. M. P., Bidyadhar, R., Bhilawe, P., Anand, D., Vaidya, A. N., Wate, S. R., "Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the final compost", Bioresource Technology, 114: pp. 382–388, (2012).
[76]      Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A., "Composting of food wastes: Status and challenges", Bioresource Technology, 248: pp. 57–67, (2018).
[77]      Zhang, H., Li, G., Gu, J., Wang, G., Li, Y., Zhang, D., "Influence of aeration on volatile sulfur compounds (VSCs) and NH3 emissions during aerobic composting of kitchen waste", Waste Management, 58: pp. 369-375, (2016).
[78]      Gutiérrez, M. C., Martín, M. A., Serrano, A., Chica, A. F., "Monitoring of pile composting process of OFMSW at full scale and evaluation of odour emission impact", Journal of Environmental Management, 151: pp. 531-539, (2015).
[79]      Schiavon, M., Martini, L. M., Corrà, C., Scapinello, M., Coller, G., Tosi, P., Ragazzi, M., "Characterization of volatile organic compounds (VOCs) released by the composting of different waste matrices", Environmental Pollution, 231: pp. 845–853, (2017).
[80]      Coker, C., "Managing odors in organics recycling", BioCycle, 53(4): pp. 25-28, (2012).
[81]      Han, Z., Qi, F., Wang, H., Liu, B., Shen, X., Song, C., Bao, Z., Zhao, X., Xu, Y., Sun, D., "Emission characteristics of volatile sulfur compounds (VSCs) from a municipal sewage sludge aerobic composting plant", Waste Management, 77:
pp. 593-602, (2018).
[82]      Mustafa, M. F., Liu, Y., Duan, Z., Guo, H., Xu, S., Wang, H., Lu, W., "Volatile compounds emission and health risk assessment duringcomposting of organic fraction of municipal solid waste", Journal of Hazardous Materials, 327: pp. 35-43, (2017).
[83]      Zhang, L., Sun, X., "Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste", Bioresource Technology, 163: pp. 112–122, (2014).
[84]      Vargas-García, M. C., Suárez-Estrella, F., López, M. J., Moreno, J., "Microbial population dynamics and enzyme activities in composting processes with different starting materials", Waste Management, 30(5): pp. 771-778, (2010).
[85]      Mirdamadian, S. H., Khayam-Nekoui, S. M., Ghanavati, H., "Reduce of fermentation time in composting process by using a special microbial consortium", World Acad Sci Eng Technol, 52: pp. 475-479, (2011).
[86]      Echeverria, M. C., Cardelli, A., Bedini, S., Colombini, A., Incrocci, I., Castagna, A., Agnolucci, M., Cristani, C., Ranieri, A., Saviozzi, A., Nuti, M., "Microbial enhanced composting of wet olive husks", Bioresource Technology, 104: pp. 509–517, (2012).
[87]      Xu, Z., Zhang, F. B., Zhang, L. L., Li, J., "Effects of indigenous and exogenous microbial inocula on dynamic changes of enzyme activities during composting in a bioreactor", Adv. Mater. Res., 383: pp. 4017–4023, (2012).
[88]      Kim, J. H., Block, D. E., Mills, D. A., "Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass", Applied microbiology and biotechnology, 88(5): pp. 1077–1085, (2010).
[89]      Zhang, L., Sun, X., Tian, Y., Gong, X., "Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste", Bioresource Technology, 131: pp. 68–75, (2013).
[90]      Chiarelotto, M., Damaceno, F. M., Lorin, H. E. F., Tonial, L. M. S., de Mendonça Costa,
L. A., Bustamante, María A., Moral, R., Marhuenda-Egea, F. C., Costa, M. S. S. de Mendonça, "Reducing the composting time of broiler agro-industrial wastes: The effect of process monitoring parameters and agronomic quality", Waste Management, 96: pp. 25-35, (2019).
[91]      Grigatti, M., Cavani, L., Ciavatta, C., "The evaluation of stability during the composting of different starting materials: Comparison of chemical and biological parameters", Chemosphere, 83(1): pp. 41-48, (2011).
[92]      Oviedo-Ocaña, E. R., Torres-Lozada, P., Marmolejo-Rebellon, L. F., Hoyos, L. V., Gonzales, S., Barrena, R., Komilis, D., Sanchez, A., "Stability and maturity of biowaste composts derived by small municipalities: Correlation among physical, chemical and biological indices", Waste Management, 44: pp. 63–71, (2015).
 
[93]      California Compost Quality Council (CCQC), "Compost maturity index", (2001).
]94[    علیدادی، ح.، نجف‌پور، ع.، "تعیین زمان رسیدن کمپوست حاصل از لجن تصفیه‌خانه فاضلاب شهری". دانشگاه علوم پزشکی مازندران، 21 (85)، (1390).
[95]      Onwosi, C. O., Igbokwe, V. C., Odimba, J. N., Eke, I. E., Nwankwoala, M. O., Iroh, I. N., Ezeogu, L. I., "Composting technology in waste stabilization: on the methods, challenges and future prospects", Journal of Environmental Management, 190: pp. 140–157, (2017).
[96]      Tsai, Chung-Jung, Chen, Mei-Lien, Ye, An-Di, Mao, I-Fang, "Single SnO2 gas sensor as a practical tool for evaluating the efficiency of odour control engineering at food waste composting plants", Sensors and Actuators B: Chemical, 169: pp. 248-254, (2012).
[97]      Irvine, G., Lamont, E. R., Antizar-Ladislao, B., "Energy from waste: reuse of compost heat as a source of renewable energy", International Journal of  Chemical Engineering, doi: http://dx.doi.org/ 10.1155/2010/627930, (2010).