نانوتقویت‌کننده‌های آلی مورد استفاده در تولید بسته‌بندی‌های نانوچندسازه

نوع مقاله: مقاله مروری

نویسندگان

دانشگاه ارومیه

چکیده

استفاده از پرکننده‌ها یکی از راهکارهای تقویت خواص پلاستیک‌ها به‌شمار می‌رود. نانوتقویت‌کننده‌ها دسته‌ای از مواد پرکننده هستند که دارای ابعادی زیر 100 نانومتر هستند و به تولید نانوچندسازه‌ها (کامپوزیت) منجر می‌شوند. نانوتقویت‌کننده‌های مورد استفاده در تولید بسته‌بندی‌های نانوچندسازه به دو دستۀ آلی و معدنی تقسیم می‌شوند. از نانومواد آلی می‌توان به نانوبلور سلولز، نانوالیاف کیتین و کیتوزان و هم‌چنین نانوذرات نشاسته اشاره نمود. در این مقالۀ مروری، ساختار و ویژگی‌های نانوپرکننده‌های آلی تشریح شده‌است و هم‌چنین تأثیر آنها در بهبود خواص کاربردی بَسپارها و بیوبَسپارها که در سال‌های اخیر مورد مطالعه قرار گرفته‌اند، بررسی شده و به بیان مهم‌ترین نتایج این پژوهش‌ها پرداخته شده‌است. همچنین به‌کارگیری این نانومواد در تولید نانوچندسازه‌ها، رویکردهای نوینی پیدا کرده‌است؛ مانند استفاده در تثبیت زیمایه‌ها (آنزیم) و تولید نانوآمیزتبارها (نانوهیبریدها). همچنین در این‌مقاله، کاربردهای جدید نانومواد آلی که مسیر آیندۀ پژوهش در این‌زمینه را مشخص می‌سازد، مورد بررسی قرار گرفته‌است. 

کلیدواژه‌ها


Svagan, A. J., Hedenqvist, M. S., Berglund, L., "Reduced water vapor sorption in cellulose nanocomposites with starch matrix", Composites Science and Technology, 69, pp. 500-506, (2009).

[2]        Gacitua, W. E., Ballerini, A. A., Zhang, J., "Polymer nanocomposites: synthetic and natural fillers a review", Ciencia y technologia, 7(3), pp. 159-178, (2005).

[3]        Kawasumi, M., "The discovery of polymer/clay hybrids", Journal of Polymer Science, Part A: Polymer Chemistry, 42, pp. 819-824, (2004).

[4]        Dufresne, A., Belgacem, M. N., "Cellulose reinforced composites: from micro to nanoscale, Overview", Polimeros: Ciencia e Tecnologia, 13, pp. 1-10, (2010).

[5]        Ghanbarzadeh, B., Almasi, H., Boidegradable polymers. In R. Chamy, & F. Rosenkranz (Eds.), Biodegradation—life of science, Croatia: InTechPublications, pp. 141–186, (2013).

[6]        Goetz, L., Mathew, A., Oksman, K., Gatenholm, P. & Ragauskas, A.P., "A novel nanocomposite film prepared from crosslinked cellulosic whiskers", Carbohydrate Polymers, 75, pp. 85–89, (2009).

[7]     قنبرزاده، ب.، الماسی، ه.، "اصلاح سطحی نانوکریستال سلولز؛ بخش اول: ساختار، ویژگی‌ها و روش‌های اصلاح"، مجله دنیای نانو، 8(29): 10-16، (1391).

[8]        Siqueira, G., Bras, J., Dufresne, A., " Cellulosic bionanocomposites: a review of preparation, properties and applications", Polymers, 2,
pp. 728-765, (2010).

 

 

 

 

[9]        Abdul Khalil, H. P. S., Bhat, A. H., Ireana Yusra A. F., "Green composites from sustainable cellulose nanofibrils: A review", Carbohydrate Polymers. 87, pp. 963– 979, (2012).

[10]      Ghanbarzadeh, B., Oleyaei, A. Almasi, H.,

"Nano-structured materials utilized in natural biopolymer films for food packaging applications", Critical Reviews in Food Science and Nutrition, 55, pp. 1699-1723, (2015).

[11]      Favier, V., Canova, G. R., Cavaillé, J. Y., Chanzy, H., Dufresne, A., Gauthier, C., "Nanocomposite materials from poly (S-co-BuA) and cellulose whiskers", Polymers for advanced technologies, 6, pp. 351-3355, (1995).

[12]      Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M., "A review on the tensile properties of natural fiber reinforced polymer composites", Composites: Part B, 42, pp. 856-873, (2011).

[13]      Ranjbaryan, S., Pourfathi, B., Almasi, H., "Reinforcing and release controlling effect of cellulose nanofiber in sodium caseinate films activated by nanoemulsified cinnamon essential oil", Food Packaging and Shelf Life, 21,

p. 100341 (2019).

[14]      Jahed, E., Alizadeh Khaledabad, M., Rezazad Bari, M., Almasi, H., "Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films", Reactive and Functional Polymers, 117, pp. 70–80, (2017).

[15]      Chazeau, L., Paillet, M., Cavaille´, J. Y., "Plasticized PVC reinforced with cellulose whiskers. i. linear viscoelastic behavior analyzed through the

quasi-point defect theory", Journal of Polymer Science: Part B: Polymer Physics, 37, pp. 2151-2164, (1999).

[16]   قنبرزاده، ب.، ابوالقاسمی‌فخری، ل.، دهقان‌نیا، ج.، "مقایسه نفوذپذیری، زاویه تماس و ویژگی‌های گرمایی نانوکامپوزیت‎های برپایه کربوکسی متیل سلولز دارای دو نوع پرکننده: نانورس و نانوویسکر سلولز" نشریه شیمی و مهندسی شیمی ایران، 32، 13-25، (1382).

[17]      Tao, Y., Yan, L., Jie, R., "Preparation and properties of short natural fiber reinforced poly (lactic acid) composites", Transactions of Nanoferrous Metals Society of China, 19, pp. 651-655, (2009).

[18]      Paralikar, S. A., Simonsen, J., Lombardi, J., "Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes", Journal of Membrane Science, 320,

pp. 248-258, (2008).

[19]      Petersson, L., Oksman, K., "Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement", Composites Science and Technology, 66,

pp. 2187-2196, (2006).

[20]   قنبرزاده، ب.، نوشیروانی، ن.، "مقایسه ریزساختار، توپوگرافی و آب‌دوستی سطحی فیلم‌های آلیاژی نشاسته- پلی‌وینیل الکل حاوی نانوکریستال سلولز و نانورس"، مهندسی بیوسیستم ایران، 44، 78-100، (1392).

[21]      Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A.A. & Khosrowshahi Asl, A., "Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly(lactic acid): Morphological and physical properties" , Food Packaging and Shelf Life, 5, pp. 21-31, (2015).

[22]      Khana, A., Khana, R. A., Salmieri, S., Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R., & Lacroix, M., "Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films", Carbohydrate Polymers, 90, pp. 1601-1608, (2012).

[23]      Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R., "Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles", International Journal of Biological Macromolecules, 54, pp. 166-173, (2013).

[24]      Atef, M., Rezaei, M., Behrooz, R., "Preparation and characterization agar-based nanocomposite film reinforced by nanocrystalline cellulose", International Journal of Biological Macromolecules, 70,

pp. 537-544, (2014).

[25]      Indriyatia, S., Yudiantia, R., Karina, M., "Development of nanocomposites from bacterial cellulose and poly (vinyl alcohol) using

casting-drying Method", Procedia Chemistry, 4, pp. 73-79, (2012).

[26]      Tang, C., Liu, H., "Cellulose nanofiber reinforced poly (vinyl alcohol) composite film with high visible light transmittance", Composites: Part A, 39,

pp. 1638-1643, (2008).

[27]      Suryanegara, L., Nakagaito, A. N., Yano, H., "The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated

cellulose-reinforced PLA composites", Composites Science and Technology, 69, pp. 1187-1192, (2009).

[28]      Jonoobi, M., Harun, J., Mathew, A.P., Oksman, K., "Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion", Composites Science and Technology, 70, pp. 1742-1747, (2010).

[29]      Oksman, K., Mathew, A. P., Bondeson, D., Kvien, I., "Manufacturing process of cellulose whiskers/polylactic acid nanocomposites", Composites Science and Technology, 66,

pp. 2776-2784, (2006).

[30]      Jahed, E., Alizadeh Khaledabad, M., Almasi, H. Hassanzadeh, R., "Physicochemical properties of Carum copticum essential oil loaded chitosan films containing organic nanoreinforcements", Carbohydrate Polymers, 164, pp. 325-338, (2017).

[31]      Ifuku, S. Saimoto, H., "Chitin nanofibers: preparations, modifications, and applications", Nanoscale, 4, pp. 3308-3319, (2012).

[32]      Nagal, K., Singh, S. K. Mishra, D. N., "Chitosan nanoparticles: a promising system in novel drug delivery", Chemical and Pharmaceutical Bulletin, 58(11), pp. 1423-1430, (2010).

[33]      Ghanbarzadeh, B., Almasi, H., Oleyaei, A., "A novel modified Starch/carboxymethyl cellulose/ montmorillonite bionanocomposite film: structural and physical properties", International Journal of Food Engineering, 10(1), pp. 121-130, (2014).

[34]      De Moura, M. R., Lorevice, M. V., Mattoso, L. H. C. Zucolotto, V., "Highly stable, edible cellulose films incorporating chitosan nanoparticles", Journal of Food Science, 76, pp. N25-N29, (2011).

[35]      Hosseini, S. F., Rezaei, M., Zandi, M. Farahmandghavi, F., "Fabrication of bionanocomposite films based on fish gelatin reinforced with chitosan nanoparticles", Food Hydrocolloids, 44, pp. 172-182, (2015).

[36]      Sahraee, S., Milani, J. M., Ghanbarzadeh, B., Hamishekar, H., "Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin", LWT Food Science and Technology, 76, pp. 33-39, (2017).

[37]      Sahraee, S., Milani, J. M., Ghanbarzadeh, B., Hamishehkar, H. Samadi Kafil, H., "Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles", International Journal of Biological Macromolecules, 97,

pp. 373-381, (2017).

[38]      Chen, C., Deng, S., Yang, Y., Yang, D., Ye, T., Li, D., "Highly transparent chitin nanofiber/gelatin nanocomposite with enhanced mechanical properties", Cellulose, 25, pp. 5063-5070, (2018).

[39]      Chang, P. R., Jian, R., Yu, J. Ma, X., "Fabrication and characterization of chitosan nanoparticles/

plasticized-starch composites", Food Chemistry, 120,

pp. 736-740, (2010).

[40]      Chang, P. R., Jian, R., Yu, J. Ma, X., "Starch-based composites reinforced with novel chitin nanoparticles", Carbohydrate Polymers, 80,

pp. 420-425, (2010).

[41]      Lorevice, M. V., Otoni, C. G., Moura, M. R. Mattoso, L. H. C., "Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films", Food Hydrocolloids, 52, pp. 732-740, (2016).

[42]      Jafari, H., Pirouzifard, K., Alizadeh Khaledabad, M. Almasi, H., "Effect of chitin nanofiber on the morphological and physicalproperties of chitosan/silver nanoparticle bionanocomposite films", International Journal of Biological Macromolecules, 92, pp. 461-466, (2016).

[43]      Amjadi, S., Emaminia, S., Heyat Davudian, S., Pourmohammad, S., Hamishehkar, H., Roufegarinejad, L., "Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles", Carbohydrate Polymers, 216, pp. 376-384 (2019).

[44]      Le Corre, D. Angellier, H., "Preparation and application of starch nanoparticles for nanocomposites: A review", Reactive & Functional Polymers, 85, pp. 97-120, (2014).

[45]      Chen, G., Wei, M., Chen, J., Huang, J., Dufresne, A. Chang, P. R., "Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals", Polymer, 49, pp. 1860–1870, (2008).

[46]      Chen, Y., Cao, X., Chang, P. R. Huneault, M.A., "Comparative study on the films of poly (vinyl alcohol)/pea starch nanocrystals and poly (vinyl alcohol)/native pea starch", Carbohydrate Polymers, 73, pp. 8-17, (2008).

[47]      Yu, J., Ai, F., Dufresne, A., Gao, S., Huang, J. Chang, P. R.," Structure and mechanical properties of poly (lactic acid) filled with (starch nanocrystal)-graft-poly (ε-caprolactone)", Macromolecular Material Engineering, 293, pp. 763-770, (2008).

[48]      Dufresne, A., "Crystalline starch based nanoparticles", Current Opinion in Colloid & Interface Science, 19, pp. 397-408, (2014).

[49]      Haaj, S. B., Thielemans, W., Magnin, A. Boufi, S., "Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study", Carbohydrate Polymers, 143, pp. 310-317, (2016).

[50]      Dufresne, A., Cavaillé, J. Y., Helbert, W., "New nanocomposite materials: microcrystalline starch reinforced thermoplastic", Macromolecules, 29,

pp. 7624-7626, (1996).

[51]      LeCorre, D. S., Bras, J. Dufresne, A., "Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites", Moacromolecular Materials Engineering, 297, pp. 969-978, (2012).

[52]      Nasseri, R., Mohammadi, N., "Starch-based nanocomposites: A comparative performance study of cellulose whiskers and starch nanoparticles", Carbohydrate Polymers, 106, pp. 432-439, (2014).

[53]      Teodoro, A. N., Mali, S., Romero, N., Carvalho, D.M., "Cassava starch films containing acetylated starch nanoparticles asreinforcement: physical and mechanical characterization", Carbohydrate Polymers, 126, pp. 9-16, (2015).

[54]      Angellier, H., Molina-Boisseau, S., Dufresne, A., "Mechanical properties of waxy maize starch nanocrystals reinforced natural rubber", Macromolecules, 38, pp. 9161-9170, (2005).

[55]      Habibi, Y., Dufresne, A., "Highly filled bionanocomposites from functionalized polysaccharide nanocrystals", Biomacromolecules, 9, pp. 1975-1980, (2008).

[56]      Condes, M. C., Anon, M. C., Dufresne, A., "Composite and nanocomposite films based on amaranth biopolymers ", Food Hydrocolloids, 74,

pp. 159-167, (2018).

[57]      Duan, B., Sun, P., Wang, X., Yang, C., "Preparation and properties of starch nanocrystals/carboxymethyl chitosan nanocomposite films", Starch-Starke, 63,

pp. 528-535, (2011).

[58]      Dubief, D., Samain, E., Dufresne, A., "Polysaccharide microcrystals reinforced amorphous poly

(β-hydroxyoctanoate) nanocomposite materials", Macromolecules, 32, pp. 5765-5771, (1999).

[59]      Wang, Y., Tian, H., Zhang, L., "Role of starch nanocrystals and cellulose whiskers in synergistic reinforcement of waterborne polyurethane", Carbohydrate Polymers, 80, pp. 665-671, (2010).

[60]      Chen, X., Schluesener, H. J., "Nanosilver: A nanoproduct in medical application", Toxicology Letters, 176, pp. 1-12, (2008).

[61]      Zheng, H., Ai, F., Chang, P. R., Huang, J. Dufresne, A., "Structure and properties of starch

nanocrystal-reinforced soy protein plastics", Polymer Composites, 30, pp. 474-480, (2009).

[62]      Viguié, J., Molina-Boisseau, S., Dufresne, A., "Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals", Macromolecular Bioscience, 7, pp. 1206-1216, (2007).

[63]      Li, X., Qiu, C., Ji, N., Sun, C., Xiong, L., Sun, L., "Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films", Carbohydrate Polymers, 121, pp. 155-162, (2015).

[64]      Shi, A. M., Wang, L. J., Li, D., Adhikari, B.,"Characterization of starch films containing starch nanoparticles: Part 1: Physical and mechanical properties", Carbohydrate polymers, 96(2),

pp. 593-601, (2013).

[65]      Dai, L., Qiu, C., Xiong, L., Sun, Q., "Characterization of corn starch-based films reinforced with taro starch nanoparticles", Food Chemistry, 174, pp. 82-88, (2015).

[66]      Almasi, H., Ghanbarzadeh, B., Dehghannia, J., Pirsa, S., Zandi, M., "Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: effect of reaction time and oleic acid concentration", Fibers and Polymers, 16, pp. 1715-1722, (2015).

 

[67]      Kalia, S., Boufi, S., Celli, A., Kango, S., "Nanofibrilated cellulose: surface modification and potential applications", Colloid and Polymer Science, 292, pp. 5-31, (2014).

[68]      Almasi, H., Ghanbarzadeh, B., Dehghannya, J., Entezami, A. A., Khosrowshahi Asl, A. "Development of novel controlled release nanocomposite based on Poly(lactic acid) for increasing the oxidative stability of soybean oil", Food additives & Contaminants, Part A, 31(9),

pp. 1586-1597, (2014).

[69]      Spoljaric, S., Genovese, A., Shanks, R. A., "Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties", Composites: Part A, 72, pp. 791-799 (2018). 

[70]      Chang, P. R., Ai, F., Chen, Y., Dufresne, A., Huang, J., "Effect of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane based nanocomposites", Journal of Applied Polymer Science, 111,

pp. 619-627, (2009).

[71]      Almasi, H., Jafarzadeh, P., Mehryar, L., "Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties", Carbohydrate Polymers, 186,

pp. 273-281, (2018).

[72]      Mirtalebi, S., Almasi, H., Alizadeh Khaledabad, M., "Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods", International Journal of Biological Macromolecules, 128, pp. 848-857, (2019).

[73]      Mohammadalinejhad, S., Almasi, H., Esmaiili, M., "Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties", Materials Science & Engineering C, 105, p. 110115 (2019).

[74]      Bayazidi, P., Almasi, H., Khosrowshahi Asl, A., "Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties", International Journal of Biological Macromolecules, 107, pp. 2544-2551, (2018).

[75]     Huang, W. C., Wang, W., Xue, C., Mao, X., "Effective enzyme immobilization onto magnetic chitin nanofiber composite", ACS Sustainable Chemistry & Engineering, 7, pp. 8118-8124, (2018).