نقش انواع جاذب‌ها در حذف ترکیبات گوگرددار از سوخت‌های گاز یا مایع

نوع مقاله: مقاله مروری

نویسندگان

1 دانشگاه گرمسار

2 پژوهشگاه صنعت نفت

چکیده

درحالی‌که قوانین محیط زیست درصدد محدودکردن آلاینده‌های محیطی (به‌ویژه ترکیبات گوگرددار) حاصل از سوخت‌ها است، تقاضا برای سوخت‌های گاز یا مایع در دهه‌های اخیر افزایش یافته‌است. روش‌های گوناگونی برای کاهش ترکیبات گوگرددار حاصل از سوخت‌های گاز یا مایع وجود دارد و روش جذب سطحی بر روی جاذب جامد، توجه بسیاری از محققان را به‌عنوان یک‌روش کارامد و ارزان و دارای بازده بالا جلب کرده‌است. مطالعۀ مقاله‌ها و نتایج پژوهش‌های آزمایشگاهی در این‌زمینه، گویای آن است  که ساختارهای آلی- فلزی به‌علت خواص منحصر به‌فردی همچون داشتن تخلخل بالا و حفره‌های چندگانه، مساحت سطح زیاد، جذب بالاتر و انرژی کمتر در مقایسه با سایر جاذب‌ها مانند سیلیکاژل، رئولیت‌ها، ساختارهای کربنی و فلزی برای حذف ترکیبات گوگرددار از سوخت‌های گاز یا مایع عملکرد بالاتری را از خود نشان‌داده‌اند. البته تعیین دقیق عملکرد آنها در مقایسه با سایر جاذب‌ها به شرایط عملیاتی و نوع مادۀ جذب‌شونده بستگی دارد. باوجود اختلاف در شرایط آزمایشگاهی، ساختارهای آلی-فلزی و یا آمیزتبار (هیبرید) آنها دارای ظرفیت بالای قابل توجه‌تری  برای حذف گوگرد (gS/g 1/0) نسبت به سایر جاذب‌ها (gS/g 01/0) هستند (بیش از 10 برابر جذب گوگرد). البته باید این نکته را ذکر کرد که به‌علت اختلاف در شرایط آزمایشگاهی باید این مقایسه‌ها با احتیاط انجام‌شود. این‌ساختارها حتی بعد از چندین دورۀ جذب- دفع عملکرد و پایداری خود را حفظ کرده و نتایج خوبی را برای حذف گوگرد از خود نشان داده‌اند. این ساختارها علاوه‌بر کاربرد گسترده در کاتالیست‌ها و حسگرها، در سال‌های اخیر به‌عنوان جاذب برای حذف ترکیبات گوگرددار فاز گاز یا مایع مورد توجه قرار گرفته‌اند.

کلیدواژه‌ها


 

[1]        Ullah, R., Bai, P., Wu, P., Liu, B., Subhan, F., Yan, Z., "Cation–anion double hydrolysis derived mesoporous mixed oxides for reactive adsorption desulfurization", J. Microporous Mesoporous Mater, 238: pp. 36–45, (2017).

[2]        Tang, W., Gu, J., Huang, H., Liu, D., Zhong, C., "Metal‐organic frameworks for highly efficient adsorption of dibenzothiophene from liquid fuels", J. AIChE, 62, 12, pp. 4491-4496, (2016).

[3]        Ania, C. O., Bandosz, T. J., "Importance of structural and chemical heterogeneity of activated carbon surfaces for adsorption of dibenzothiophene", J. Langmuir, 21, 17, pp. 7752-7759, (2005).

[4]        Zhu, W., Wu, P., Chao, Y., Li, H., Zou, F., Xun, S., Fengxia, Zh., Zhen, Zh., "A novel reaction-controlled foamtype polyoxometalate catalyst for deep oxidative desulfurization of fuels", J. Ind. Eng. Chem. Res., 52, 49, pp. 17399-17406, (2013).

[5]        Mitchell, L., "Adsorption of light gases and gas mixtures on zeolites and nanoporous carbons", Vanderbilt University, (2014).

[6]        Cosoli, P., Ferrone, M., Pricl, S., Fermeglia, M., "Hydrogen sulphide removal from biogas by zeolite adsorption: Part I. GCMC molecular simulations", Chemical Engineering Journal, 145(1), pp. 86-92, (2008).

[7]        Chowanietz, V., Pasel, C., Luckas, M., Bathen, D., "Temperature Dependent Adsorption of Sulfur Components, Water, and Carbon Dioxide on a Silica−Alumina Gel Used in Natural Gas Processing", J. Chem. Eng. Data, (2019).

[8]        Steuten, B., Pasel, C., Luckas, M., Bathen, D., "Trace Level Adsorption of Toxic Sulfur Compounds, Carbon Dioxide, and Water from Methane", J. Chem. Eng. Data, 58, pp. 2465−2473, (2013).

[9]       Zhang, M., Wang, M., Yang, J., Li, H., Liu, J., Chen, X., Zhu, W., Li, H., "Polyoxometalate-based
silica-supported ionic liquids for heterogeneous oxidative desulfurization in fuels", Petroleum Science, 15, pp. 882–889, (2018).

[10]      Tavassoli, N., Ansaria, R., Mosayebzadeh, Z., "Synthesis and Application of Iron Oxide/Silica Gel Nanocomposite for Removal of Sulfur Dyes from Aqueous Solutions", Arch Hyg Sci, 6(2):
pp. 214-220, (2017).

[11]      Cosoli, P., Ferrone, M., Pricl, S., Fermeglia, M., "Hydrogen sulfide removal from biogas by zeolite adsorption. Part II. MD simulations", Chemical Engineering Journal, 145(1), pp. 93-99, (2008).

[12]      Yang, R. T., Takahashi, A., Yang, F. H., "New Sorbents for Desulfurization of Liquid Fuels by
π- Complexation", Ind. Eng. Chem. Res, (2001).

[13]      Garcia, C. L., Lercher, J. A., "Adsorption of H2S on ZSM-5 zeolites", Phys. Chem, pp. 2230-2235, (1992).

[14]      Barzaminia, R., Falamakib, C., Mahmoudia, R., "Adsorption of ethyl, iso-propyl, n-butyl and
iso-butyl mercaptans on AgX zeolite: Equilibrium and kinetic study", J. Fuel, pp. 46-53, (2014).

[15]      Xiang, H., Zhang, H., Liu, P., Yan, Y., "Preperation of high puritybPropane from liquefied Petroleum Gas in a fixed Bed by Removal of Sulfur and Butanes", J. chemical engineering, pp. 224-232, (2016).

 

 

 

 

[16]      Rezaei, S., Jarligo, M. O. D., Wu, L., Kuznicki, S. M., "Breakthrough performances of metal-exchanged nanotitanate ETS-2 adsorbents for room temperature desulfurization", J. Chemical Engineering Science, pp. 444-449, (2015).

[17]      Micoli, L., Bagnasco, G., Turco, M., "H2S removal from biogas for fuelling MCFCs: New adsorbing materials", international journal of hydrogen energy, pp. 1783-1787, (2014).

[18]      Mohammed, A. H. A., Nassrullah, Z. K., "Preparation and Formation of Zeolite 5A from Local Kaolin Clay for Drying and Desuphurization of Liquefied Petroleum Gas", J. Chemical and Petroleum Engineering, 14, pp. 1-13, (2013).

[19]      Ratnasamy, C., Wagner, J. P., Spivey, S., Weston, E., "Removal of sulfur compounds from natural gas for fuel cell applications using a sequential bed system", J. Catalysis Today, pp. 233-238, (2012).

[20]      Ryzhikov, A., Huleaa, V., Tichit, D., Leroi, C., Anglerot, D., Coq, B., "Methyl mercaptan and carbonyl sulfide traces removal through adsorption and catalysis on zeolites and layered double hydroxides", J. Applied Catalysis A: General.

pp. 218-224, (2011).

[21]      Karge, H. G., Rask, J., "Hydrogen Sulfide Adsorption on Faujasite-Type Zeolites with Systematically Varied Si-AI Ratios", J. Colloid and Interface Science, (1977).

[22]      Qazvini, O. T., Fatemi, S., "Modeling and Simulation Pressure - Temprature Swing Adsorption Process to Remove mercaptan from Humid Natural Gas, A Commercial Case Study", seperation and purification Technology, pp. 88-103, (2015).

[23]      Zhang, X., Wang, R., Yang, X., "Effect of alkaline treatment on pore structure and acidity of HZSM-5 in the synthesis of ethyl mercaptan", Catalysis Communications pp. 32-36, (2015).

[24]      Kim, K. M.,  Oh, H. T., Lim, S. J., Ho, K., Park, Y., Lee, C. H., "Adsorption Equilibria of Water Vapor on Zeolite 3A, Zeolite 13X, and Dealuminated Y Zeolite", Chem. Eng. Data, (2016).

[25]      Ozekmekci, M., Salkic, G., Fellah, M. F., "Use of zeolites for the removal of H2S: A mini-review", Fuel Processing Technology, pp. 49-60, (2015).

[26]      Yuan, W., Bandosz, T. J., "Removal of hydrogen sulfide from biogas on sludge-derived adsorbents", J. Fuel, pp. 2736-2746, (2007).

[27]      Feaver, A., Cao, G., "Activated carbon cryogels for low pressure methane storage", J. Carbon, 44(3),

pp. 590-593, (2006).

[28]      Suzuki, M., "Activated carbon fiber: fundamentals and applications", J. Carbon, 32(4), pp. 577-586, (1994).

[29]      Jones, C. W., Koros, W. J., "Carbon molecular sieve gas separation membranes-I. Preparation and characterization based on polyimide precursors", J. Carbon, 32(8), pp. 1419-1425, (1997).

[30]      Gilani, N., Towfighi, J., Rashidi, A., Mohammadi, T., Omidkhah, M., Sadeghian, S., "Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes", J. Applied Surface Science, (2012).

[31]      Khaleghi Abbasabadi, M., Rashidi, A., Khodabakhshi, S., "Benzenesulfonic acid-grafted graphene as a new and green nanoadsorbent in hydrogen sulfide removal", J. Natural Gas Science and Engineering, 28 , pp. 87-94, (2016).

[32]      Zhang, X., Tang, Y., Qu, S., Jianwen, D., Hao, Z., "H2S‑Selective Catalytic Oxidation: Catalysts and Processes", catalysis, (2015).

[33]      Yan, R., Chin, T., Ng, Y. L., Duan, H., Liang, D. T., Tay, H., "Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons", J. Environmental Science & Technology, pp. 316-323, (2004).

[34]      Abatzoglou, N., Boivin, S., "A review of biogas purification processes", Biofuels, Bioproducts and Biorefining, pp. 42-71, (2009).

[35]      Tajizadegan, H., "Novel ZnO–Al2O3 composite particles as sorbent for low temperature H2S removal", J. Chinese Chemical Letters, 24(2):

pp. 167-169, (2013).

[36]      Blanco-Brieva, G., Campos-Martin, J., Al-Zahrani, S., Fierro, J., "Removal of refractory organic sulfur compounds in fossil fuels using MOF sorbents", J. Global Nest, 12(12), pp. 296-304, (2010).

[37]      Barthelet, K., Marrot, J., Riou, D., Ferey, G., "A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics", J. Angewandte Chemie, 114(2), pp. 291-294, (2002).

[38]      Rowsell, J. L. C., Yaghi, O. M., "Metal organic framework: a new class of porous material",

J. Micropor. Mesopor. Mater, pp. 3-14, (2004).

[39]      Li, Y., Wang, L. J., Fan, H. l., Shangguan, J., Wang, H., Mi, J., "Removal of sulfur compounds by a copper-based metal organic framework under ambient conditions", Energy & Fuels, 29(1), pp. 298-304, (2014).

[40]      Li, H., Eddaoudi, M., OKeeffe, M., Yaghi, O. M., "Design and synthesis of an exceptionally stable and highly porous metal-organic framework", J. Nature, 402(6759), pp. 276-279, (1999).

[41]      Ren, X., Miao, G., Xiao, Z., Ye, F., Li, Z., Wang, H., "Catalytic adsorptive desulfurization of model diesel fuel using TiO2/SBA-15 under mild conditions", J. Fuel, 174, pp. 118-125, (2016).

[42]      Tang, M., Zhou, L., Du, M., Lyu, Z., Wen, X. D., Li, X., "A novel reactive adsorption desulfurization Ni/MnO adsorbent and its hydrodesulfurization ability compared with Ni/ZnO", J. Catalysis Communications, 61, pp. 37-40, (2015).

[43]      Al-Zuhair, S., Khalil, A., Hassan, M., Abdulrazak, A., Basel, K., Fardoun, A., "Performance evaluation of LPG desulfurization by adsorption for hydrogen production", J. Energy Chemistry, 24(4), pp. 477-484, (2015).

[44]      Pourreza, A., Askari, S., Rashidi, A., Seif, A., Kooti, M., "Highly efficient SO3Ag-functionalized

MIL-101(Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study", Chemical Engineering Journal, (2019).

[46]      Liu, J., Wei, Y., Li, P., Zhao, Y., Zou, R., "Selective H2S/CO2 Separation by Metal−Organic Frameworks Based on Chemical-Physical Adsorption", J. Phys. Chem. C, 121, pp. 13249−13255, (2017).

[46]      Wang, S., Fan, Y., Jia, X., "Sodium dodecyl sulfate-assisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline", J. Chemical Engineering Journal 256, pp. 14–22, (2014).

[47]      Fan, H. L., Shi, R. H., Zhang, Z. R., Zhen, T., Shangguan, J., Mi, J., "Cu-Based Metal−Organic Framework/Activated Carbon Composites for Sulfur Compounds Removal", J. applied surface science, 394: pp. 394-402, (2016).

[48]      Chen, G., Tan, S., Koros, W. J., Jones, C. W., "Metal Organic Frameworks for Selective Adsorption of t‑Butyl Mercaptan from Natural Gas", J. American Chemical Society, 29(5): pp. 3312-3321, (2015).

[49]      Peralta, D., Chaplais, G., Simon-Masseron, A., Barthelet, K., Pirngruber, G. D., "Metal−Organic Framework Materials for Desulfurization by Adsorption", J. Energy Fuels 26, pp. 4953−4960, (2012).

[50]      Saeedirad, R., Taghvaei Ganjali, S., Bazmi, M., Rashidi, A., "Effective mesoporous silica-ZIF-8 nano-adsorbents for adsorptive desulfurization of gas stream", J. the Taiwan Institute of Chemical Engineers 82, pp. 10–22, (2018).

 

[51]      Daraee, M., Saeedirad, R., Rashidi, A., "Adsorption of hydrogen sulfide over a novel metal organic framework–metal oxide nanocomposite: TOUO-x (TiO2/UiO-66)", J. Solid State Chemistry, 278,

pp. 120866-120903, (2019).

[52]      Hamon, L., Serre, C., Devic, T., Loiseau, T., Millange, F., Ferey, G., "Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V), MIL-100 (Cr), and MIL-101 (Cr) metal−organic frameworks at room temperature", J. Am. Chem. Soc. 131, pp. 8775–8777, (2009).

[53]      Petit, C., Mendoza, B., Bandosz, T. J., "Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites", J. Chem Phys Chem. 11, pp. 3678-3684, (2010).

[54]      Khan, N. A., Jhung, S. H., "Remarkable adsorption capacity of CuCl2 loaded porous vanadium benzenedicarboxylate for benzothiophene", J. Angew Chem. 124, pp. 1224–1227, (2012).

[55]      Lee, S., Lee, T., Kim, D., "Adsorption of hydrogen sulfide from gas streams using the amorphous composite of α-FeOOH and activated carbon powder", J. Ind Eng Chem Res, 56, pp. 3116–3122, (2017).

[56]      Pourreza, A., Askari, S., Rashidi, A. M., Seif, A., Kooti, M., "Highly efficient SO3Ag-functionalized MIL-101(Cr) for adsorptive desulfurization of the gas stream: Experimental and DFT study", Chemical Engineering Journal. 363, pp. 73-83, (2019).

[57] Adib, F., Bagreev, A., Bandosz, T. J., "Adsorption/Oxidation of Hydrogen Sulfide on Nitrogen-Containing Activated Carbons", J. Langmuir, 16, pp. 1980-1986, (2000).

[58]      Xiao, Y., Wang, S., Wu, D., Yuan, Q., "Experimental and simulation study of hydrogen sulfide adsorption on impregnated activated carbon under anaerobic conditions", J. Hazard. Mater. 153, pp. 1193−1200, (2008).