مروری بر گرفتگی زیستی در غشاهای اسمز معکوس جهت نمک‌زدایی آب دریا

نوع مقاله: مقاله مروری

نویسندگان

سازمان پژوهش‌های علمی و صنعتی ایران

چکیده

یکی از مشکلات اساسی که واحدهای نمک­زدایی از آب دریا، به‌ویژه واحدهای اسمز معکوس با آن روبه­رو هستند مشکل گرفتگی و تشکیل زیست‌لایه (بیوفیلم) می­باشد. گرفتگی زیستی در اثر اتصال و رشد ریزاندام­ها بر سطح غشاء ایجاد می‌شود. گرفتگی غشاء سبب افزایش افت فشار دوسوی غشاء و درنتیجه افزایش میزان انرژی مصرفی،
کاهش کارآیی و کاهش عمر غشاء می­شود. به‌طور خاص، گرفتگی زیستی سبب کاهش در شار آب، افزایش عبور نمک و افزایش تخریب زیستی غشاء می‌گردد. از این­رو، کاهش و یا حذف گرفتگی و گرفتگی زیستی جهت کاهش سرویس دوره­ای غشاء مورد توجه است. از بین انواع مختلف گرفتگی، کنترل و پایش گرفتگی زیستی دشواری­های بیشتری دارد؛ زیرا ریزاندام­ها و مواد آلی طبیعی که عامل گرفتگی زیستی هستند در شرایط مختلف، رفتار متفاوتی از خود نشان‌می­دهند. در این‌مقالۀ مروری، نحوۀ تشکیل زیست‌لایه و شاخص‌های مؤثر در آن، روش­های متداول و نوین پایش و پیشگیری از ایجاد گرفتگی زیستی بررسی شده‌است.

کلیدواژه‌ها


[1]        Fritzmann, C., Löwenberg, J., Wintgens, T., Melin, T., "State-of-the-art of reverse osmosis desalination". Desalination, 1–76, (2007).

[2]        Cipollina, A., Micale, G., Rizzuti, L., (Eds) "Seawater desalination: conventional and renewable energy processes". 1st Ed., Springer Science & Business Media, (2009).

[3]        Marconnet, C., Houari, A., Seyer, D., Djafer, M., Coriton, G., Heim, V., "Membrane biofouling control by UV irradiation". Desalination, 75–81, (2011).

[4]        Nguyen, T., Roddick, F. A., Fan, L., "Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures". Membranes (Basel), 804–40, (2012).

[5]        Khan, M. T., Manes ,C., Aubry, C., Croué, J., "Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea". Water Res, 558–68, (2013).

[6]        Tang, C., Kwon, Y., Leckie, J., "The role of foulant–foulant electrostatic interaction on limiting flux for RO and NF membranes during humic acid fouling—theoretical basis, experimental evidence, and AFM interaction force measurement". J Memb Sci, 526–32, (2009).

[7]        Tang, C., Chong, T., Fane, A., "Colloidal interactions and fouling of NF and RO membranes: a review". Adv Colloid Interface Sci, 126–43, (2011).

[8]        Bucs, S., Farhat, N., Kruithof, J., Picioreanu, C., van Loosdrecht, M., Vrouwenvelder, J., "Review on strategies for biofouling mitigation in spiral wound membrane systems". Desalination, 189–97, (2018).

[9]        Siddiqui, F., She, Q., Fane, A., Field, R., "Exploring the differences between forward osmosis and reverse osmosis fouling". J Memb Sci, 241–53, (2018).

[10]      Jeong, S., "Novel membrane hybrid systems as pretreatment to seawater reverse osmosis". PhD Thesis, OPUS open publications of UTS scholars, (2013).

[11]      Khedr, M., "Membrane fouling problems in reverse-osmosis desalination applications". Int Desalin Water Reuse, 8–17, (2000).

[12]      Sutzkover, I., Hasson, D., "Feed water pretreatment for desalination plants". Desalination, 264–289, (2010).

[13]      Al-Juboori, R. A., Yusaf, T., "Biofouling in RO system: mechanisms, monitoring and controlling". Desalination, 1–23, (2012).

[14]      Komlenic, R., "Rethinking the causes of membrane biofouling". Filtr Sep, 8–26, (2010).

[15]      Chiou, Y., Hsieh, M., Yeh, H. H., "Effect of algal extracellular polymer substances on UF membrane fouling". Desalination, 648–52, (2010).

[16]      Jiang, S., Li, Y., "Ladewig BP. A review of reverse osmosis membrane fouling and control strategies". Sci Total Environ, 567–595, (2017).

[17]      Vogeleer, P., Tremblay, Y., Mafu, A., Jacques, M., Harel, J., "Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli". Front Microbiol, 5:317–22, (2014).

[18]      Maddah, H., Chogle, A., "Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation". Appl Water Sci, 7–51, (2017).

[19]      Hori, K., "Matsumoto S. Bacterial adhesion: from mechanism to control". Biochem Eng J, 424–234, (2010).

[20]      Busscher, H. Norde, W. Sharma, P. Van der Mei, C., "Interfacial re-arrangement in initial microbial adhesion to surfaces". Curr Opin Colloid Interface Sci, 510–517, (2010).

[21]      Fletcher, M., "Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium-substratum separation distance". J Bacteriol, 2027–2030, (1988).

[22]      Pratt, L. Kolter, R., "Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili". Mol Microbiol, 285–293, (1998).

[23]      Danese, N. Pratt, L. Dove, S. Kolter, R., "The outer membrane protein, antigen 43, mediates cell‐to‐cell interactions within Escherichia coli biofilms". Mol Microbiol, 424–432, (2000).

[24]      Flemming, H., "Microbial biofouling: unsolved problems, insufficient approaches, and possible solutions". Biofilm highlights, Springer; 81–109, (2011).

[25]      Busscher, H., Weerkamp, A., "Specific and non-specific interactions in bacterial adhesion to solid substrata". FEMS Microbiol Rev, 165–173, (1987).

[26]      Kang, S., Choi, H., "Effect of surface hydrophobicity on the adhesion of S. cerevisiae onto modified surfaces by poly (styrene-ran-sulfonic acid) random copolymers". Colloids Surfaces B Biointerfaces, 70–77, (2005).

 

[27]      Herzberg, M., Kang, S., Elimelech, M., "Role of extracellular polymeric substances (EPS) in biofouling of reverse osmosis membranes". Environ Sci Technol, 4393–4398, (2009).

[28]      Farfan, M., Torres, A., "Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains". Infect Immun, 903–913, (2012).

[29]      Gristina, A., "Biomaterial-centered infection: microbial adhesion versus tissue integration". Science,1588–1595, (1987).

[30]      Richards, M., Cloete, T., "Nanoenzymes for biofilm removal". Nanotechnol Water Treat Appl Caister Acad Norfolk, 89–102, (2010).

[31]      Kristensen, J., Meyer, R., Laursen, B., Shipovskov, S., Besenbacher, F., Poulsen, C., "Antifouling enzymes and the biochemistry of marine settlement". Biotechnol Adv, 471–481, (2008).

[32]      Flemming, H., "Biofouling in water systems–cases, causes and countermeasures". Appl Microbiol Biotechnol, 629–640, (2002).

[33]      Hall-Stoodley, L., Costerton, J., Stoodley, P., "Bacterial biofilms: from the natural environment to infectious diseases". Nat Rev Microbiol, 95, (2004).

[34]      Munn, C., "Marine microbiology: Ecology & applications". Garland Science, (2011).

[35]      Hong, S., Jeong, J., Shim, S., Kang, H., Kwon, S., Ahn, K., "Effect of electric currents on bacterial detachment and inactivation". Biotechnol Bioeng, 379–386, (2008).

[36]      Goh, P., Lau, W., Othman, M., Ismail, A., "Membrane fouling in desalination and its mitigation strategies". Desalination, 130–155, (2018).

[37]      El-Arnaouty, M., Abdel, A., Eid, M., Aboulfotouh, M., Taher, N., Soliman, E., "Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting". J Radiat Res Appl Sci, 204–216, (2018).

[38]      Louie, J., Pinnau, I., Ciobanu, I., Ishida, K., Ng, A., Reinhard, M., "Effects of polyether–polyamide block copolymer coating on performance and fouling of reverse osmosis membranes". J Memb Sci, 762–770, (2006).

[39]      Armendariz, M., Quintero, Y., Llanquilef, A., Morel, M., Argentel, L., García, A., "Anti-biofouling and desalination properties of thin film composite reverse osmosis membranes modified with copper and iron nanoparticles". Materials (Basel), 2081-2086, (2019).

[40]      Bhattacharya, A., Misra, B., "Grafting: a versatile means to modify polymers: techniques, factors and applications". Prog Polym Sci, 767–814, (2004).

[41]      Saffarimiandoab, F., Gul, B., Erkoc-Ilter, S., Guclu, S., Unal, S., Tunaboylu, B., "Evaluation of biofouling behavior of zwitterionic silane coated reverse osmosis membranes fouled by marine bacteria". Prog Org Coatings, 303–311, (2019).

[42]      Wilbert, M., Pellegrino, J., Zydney A., "Bench-scale testing of surfactant-modified reverse osmosis/ nanofiltration membranes". Desalination, 15–32, (1998).

[43]      Bos, R., Van der Mei, H., Busscher, H., "Physico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study". FEMS Microbiol Rev, 179–230, (1999).

[44]      Kwon, B., Lee, S., Cho, J., Ahn, H., Lee, D., Shin, H., "Biodegradability, DBP formation, and membrane fouling potential of natural organic matter: Characterization and controllability". Environ Sci Technol, 732–739, (2005).

[45]      Linhardt, R., Galliher, P., "Cooney CL. Polysaccharide lyases". Appl Biochem Biotechnol, 135–136, (1987).

[46]      Leroy, C., Delbarre, C., Ghillebaert, F., Compere, C., Combes, D., "Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium". Biofouling, 11–22, (2008).

[47]      Webb, J., Thompson, L., James, S., Charlton, T., Tolker-Nielsen, T., Koch, B., "Cell death in Pseudomonas aeruginosa biofilm development". J Bacteriol, 4585–4592, (2003).

[48]      Kim, L., Jung, Y., Kim, S., Kim, C., Yu, H., Park, H., "Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning". Biofouling, 211–220, (2015).

[49]      Sotirova, A., Spasova, D., Vasileva-Tonkova, E., Galabova, D., "Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa". Microbiol Res, 297–303, (2009).

[50]      Denyer, S., Maillard, J., "Cellular impermeability and uptake of biocides and antibiotics in Gram‐negative bacteria". J Appl Microbiol, 35S-45S, (2002).

[51]      Russell, A., Furr, J., "Susceptibility of porin-and lipopolysaccharide-deficient strains of Escherichia coli to some antiseptics and disinfectants". J Hosp Infect, 47–56, (1986).

[52]      Al-Tahhan, R. A., Sandrin, T. R., Bodour, A., Maier, R., "Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates". Appl Environ Microbiol, 3262–3268, (2000).

[53]      Prihasto, N., Liu, Q., Kim, S., "Pre-treatment strategies for seawater desalination by reverse osmosis system". Desalination, 308–316, (2009).

[54]      Hong, S., Elimelech, M., "Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes". J Memb Sci, 159–181, (1997).

[55]      Ghayeni, S., Beatson, P., Schneider, R., Fane, A., "Adhesion of waste water bacteria to reverse osmosis membranes". J Memb Sci, 29–42, (1998).

[56]      Lee, S., Elimelech, M., "Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces". Environ Sci Technol, 980–987, (2006).

[57]      Chang, R., "Physical chemistry for the biosciences". 1st. Ed., University Science Books, U.K., (2005).

[58]      Mo, H., Tay, K., Ng, H., "Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature". J Memb Sci, 28–35, (2008).

[59]      Nejati, S., Mirbagheri, S., Warsinger, D., Fazeli, M., "Biofouling in seawater reverse osmosis (SWRO): Impact of module geometry and mitigation with ultrafiltration". J Water Process Eng, 100782, (2019).

[60]      Oliveira, F., Schneider, R., "Slow sand filtration for biofouling reduction in seawater desalination by reverse osmosis". Water Res, 155:474–86, (2019).

[61]      Chua, K. T., Hawlader, M., Malek, A., "Pretreatment of seawater: results of pilot trials in Singapore". Desalination, 225–243, (2003).

[62]      Ghayeni, S., Beatson, P., Schneider, R., Fane, A., "Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (ME-RO): preliminary performance data and microbiological aspects of system operation". Desalination, 65–80, (1998).

[63]      Decarolis, J., Hong, S., Taylor, J., "Fouling behavior of a pilot scale inside-out hollow fiber UF membrane during dead-end filtration of tertiary wastewater". J Memb Sci, 165–178, (2001).

[64]      Subramani, A., Hoek, E., "Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes". J Memb Sci, 111–125, (2008).

[65]      Brett, S., "Phosphorus removal and recovery technologies". 1st Ed., Selper Pub., U.K., (1997).

[66]      Battistoni, P., Angelis, A., Pavan, P., Prisciandaro, M., Cecchi, F., "Phosphorus removal from a real anaerobic supernatant by struvite crystallization". Water Res, 2167–2178, (2001).

[67]      Blaney, L., Cinar, S., SenGupta, A., "Hybrid anion exchanger for trace phosphate removal from water and wastewater". Water Res, 1603–1613, (2007).

[68]      Jacobs, J., Hasan, M., Paik, K., Hagen, W., van Loosdrecht, M., "Development of a bionanotechnological phosphate removal system with thermostable ferritin". Biotechnol Bioeng,918–923, (2010).

[69]      Arrojo, S., Benito, Y., Tarifa, A., "A parametrical study of disinfection with hydrodynamic cavitation". Ultrason Sonochem, 903–908, (2008).

[70]      Amjad, Z., "The science and technology of industrial water treatment". 1st. Ed., CRC press, (2010).

[71]      Richardson, S., Thruston, A., Caughran, T., Chen, P., Collette, T., Schenck, K., "Identification of new drinking water disinfection by-products from ozone, chlorine dioxide, chloramine, and chlorine". Water Air Soil Pollut;95–102, (2000).

[72]      Majamaa, K., Johnson, J., Bertheas, U., "Three steps to control biofouling in reverse osmosis systems". Desalin Water Treat, 107–116, (2012).

[73]      Kim, D., Jung, S., Sohn, J., Kim, H., Lee, S., "Biocide application for controlling biofouling of SWRO membranes—an overview". Desalination, 43–52, (2009).

[74]      Mihelcic, J., Zimmerman, J., "Environmental engineering: Fundamentals, sustainability, design" 1st Ed., Wiley Global Education, (2014).

[75]      Kang, G., Gao, C., Chen, W., Jie, X., Cao, Y., Yuan, Q., "Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane". J Memb Sci, 165–171, (2007).

[76]      Hoigné, J., Bader, H., "Rate constants of reactions of ozone with organic and inorganic compounds in water—I: non-dissociating organic compounds". Water Res, 173–183, (1983).

[77]      Kim, B., Kim, D., Cho, D., Cho, S., "Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria". Chemosphere, 52:277–81, (2003).

[78]      Richardson, S., "Disinfection by-products and other emerging contaminants in drinking water". TrAC Trends Anal Chem, 666–684, (2003).

[79]      Landaburu-Aguirre, J., García-Pacheco, R., Molina, S., Rodríguez-Sáez, L., Rabadán, J., García-Calvo, E., "Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination". Desalination, 16–30, (2016).

[80]      Bella, G., Giustra, M., Freni, G., "Optimisation of coagulation/flocculation for pre-treatment of high strength and saline wastewater: Performance analysis with different coagulant doses". Chem Eng J, 283–292, (2014).

[81]      Hakizimana, J., Gourich, B., Vial, C., Drogui, P., Oumani, A., Naja, J., "Assessment of hardness, microorganism and organic matter removal from seawater by electrocoagulation as a pretreatment of desalination by reverse osmosis". Desalination, 90–101, (2016).

[82]      Silvestry-Rodriguez, N., Bright, K., Slack, D., Uhlmann, D., Gerba, C., "Silver as a residual disinfectant to prevent biofilm formation in water distribution systems". Appl Environ Microbiol, 1639–1641, (2008).

[83]      Lok, C., Ho, C., Chen, R., He, Q., Yu, W., Sun, H., "Proteomic analysis of the mode of antibacterial action of silver nanoparticles". J Proteome Res, 916–924, (2006).

[84]      Dror-Ehre, A., Adin, A., Markovich, G., Mamane, H., "Control of biofilm formation in water using molecularly capped silver nanoparticles". Water Res, 2601–2609, (2010).

[85]      Ethiraj, A., Jayanthi, S., Ramalingam, C., Banerjee, C., "Control of size and antimicrobial activity of green synthesized silver nanoparticles". Mater Lett, 526–529, (2016).

[86]      Mandal, S., Natarajan, S., Tamilselvi, A., Mayadevi, S., "Photocatalytic and antimicrobial activities of zinc ferrite nanoparticles synthesized through soft chemical route: a magnetically recyclable catalyst for water/wastewater treatment". J Environ Chem Eng, 2706–2712, (2016).

[87]      Zhang, J., Dalal, N., Matthews, M., Waller, L., Saunders, C., Fox, K., "Supercritical carbon dioxide and hydrogen peroxide cause mild changes in spore structures associated with high killing rate of Bacillus anthracis". J Microbiol Methods, 442–451, (2007).

[88]      Gill, L., Price, C., "Preliminary observations of a continuous flow solar disinfection system for a rural community in Kenya". Energy, 4607–4611, (2010).

[89]      Bukhari, Z., Hargy, T., Bolton, J., Dussert, B., Clancy, J., "Medium‐pressure UV for oocyst inactivation". Journal‐American Water Work Assoc, 86–94, (1999).

[90]      Parsons, S., (Ed.), "Advanced oxidation processes for water and wastewater treatment". 1st. Ed., IWA publishing, (2004).

[91]      Sultan, T., "Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor". Chemosphere, 170–179, (2016).

[92]      Guerrero-Latorre, L., Gonzales-Gustavson, E., Hundesa, A., Sommer, R., Rosina, G., "UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water". Int J Hyg Environ Health, 405–411, (2016).

[93]      Uslu, G., Demirci, A., Regan, J., "Disinfection of synthetic and real municipal wastewater effluent by flow-through pulsed UV-light treatment system". J Water Process Eng, 89–97, (2016).

[94]      Zhang, Y., Zhuang, Y., Geng, J., Ren, H., Zhang, Y., Ding, L., "Inactivation of antibiotic resistance genes in municipal wastewater effluent by chlorination and sequential UV/chlorination disinfection". Sci Total Environ, 125–132, (2015).

[95]      Al-Juboori, R., Aravinthan, V., Yusaf, T., "A review of Common and Alternative Methods for Disinfection of Microorganisms in Water". Proc. 2010 South. Reg. Eng. Conf., (SREC 2010), Engineers Australia, 147–55, (2010).

[96]      Clancy, J. L., Bukhari, Z., Hargy, T., Bolton, J., Dussert, B., Marshall, M., "Using UV to inactivate Cryptosporidium". Journal‐American Water Work Assoc, 97–104, (2000).

[97]      Choi, Y., Choi, Y., "The effects of UV disinfection on drinking water quality in distribution systems". Water Res, 115–22, (2010).

[98]      Sze, S., "Semiconductor devices: physics and technology". 1st ed., John wiley & sons, (2008).

[99]      Lasa, H., Serrano, B., Salaices, M., "Photocatalytic reaction engineering". Springer, (2005).

[100]    Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maccato, C., Maragno, C., "Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems". Nanotechnology, 375709, (2007).

[101]    Simonsen, M., Jensen, H., Li, Z., Søgaard, E., "Surface properties and photocatalytic activity of nanocrystalline titania films". J Photochem Photobiol A Chem, 192–200, (2008).

[102]    Yu, B., Hu, Z., Liu, M., Yang, H., Kong, Q., Liu, Y., "Review of research on air-conditioning systems and indoor air quality control for human health". Int J Refrig, 3–20, (2009).

[103]    Gibson, J., Yong, D., Farnood, R., Seto, P., "A literature review of ultrasound technology and its application in wastewater disinfection". Water Qual Res J, 23–35, (2008).

[104]    Young, F. R., "Cavitation". Imperial College Press, London, (1999).

[105]    Gogate, P. R., Kabadi, A., "A review of applications of cavitation in biochemical engineering/biotechnology". Biochem Eng J, 60–72, (2009).

[106]    Al-Juboori, R.,Yusaf, T., Aravinthan, V., "Investigating the efficiency of thermosonication for controlling biofouling in batch membrane systems". Desalination, 349–57, (2012).

[107]    Joyce, E., Mason, T., Phull, S., Lorimer, J., "The development and evaluation of electrolysis in conjunction with power ultrasound for the disinfection of bacterial suspensions". Ultrason Sonochem, 231–234, (2003).

[108]    Marschall, H., Mørch, K., Keller, A., Kjeldsen, M., "Cavitation inception by almost spherical solid particles in water". Phys Fluids, 545–553, (2003).

[109]    Hulsmans, A., Joris, K., Lambert, N., Rediers, H., Declerck, P., Delaedt,Y., "Evaluation of process parameters of ultrasonic treatment of bacterial suspensions in a pilot scale water disinfection system". Ultrason Sonochem, 1004–1009, (2010).

[110]    Kerwick, M. I., Reddy, S. M., Chamberlain, A., Holt, D., "Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection".Electrochim Acta,5270–5277, (2005).

[111]    Guyot, S., Ferret, E., Boehm, J., Gervais, P., "Yeast cell inactivation related to local heating induced by low-intensity electric fields with long-duration pulses". Int J Food Microbiol, 180–188, (2007).

[112]    Qin, G., Li, Z., Chen, X., Russell, A. B., "An experimental study of an NaClO generator for anti-microbial applications in the food industry". J Food Eng, 111–118, (2002).

[113]    Takayuki, O., Takahiro, O., Masayuki, S., "Decomposition of nucleic acid molecules in pulsed electric field and its release from recombinantEscherichia coli". J Electrostat, 163–170, (1999).

[114]    Dutreux, N., Notermans, S., Wijtzes, T.,

Gongora-Nieto, M., Barbosa-Canovas, G., Swanson, B., "Pulsed electric fields inactivation of attached and free-living Escherichia coli and Listeria innocua under several conditions". Int J Food Microbiol, 91–98, (2000).

[115]    Reyns, K., Diels, A., Michiels, C., "Generation of bactericidal and mutagenic components by pulsed electric field treatment". Int J Food Microbiol, 165–173, (2004).

[116]    Zhe, C., Hong-Wu, W., Lu-ming, M., "Research progress on electrochemical disinfection technology for water treatment". Ind Water Wastewater, 1–5, (2008).

[117]    Wolf, G., Crespo, J., Reis, M., "Optical and spectroscopic methods for biofilm examination and monitoring". Rev Environ Sci Biotechnol, 227–251, (2002).

[118]    Lazarova, V., Manem, J., "Biofilm characterization and activity analysis in water and wastewater treatment". Water Res, 2227–2245, (1995).

[119]    Nivens, D., Palmer, R., White, D., "Continuous nondestructive monitoring of microbial biofilms: a review of analytical techniques". J Ind Microbiol, 263–276, (1995).

[120]    Davis, R., Mauer, L., "Fourier transform infrared (FT-IR) spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria". Curr Res Technol Educ Top Appl Microbiol Microb Biotechnol, 1582–1594, (2010).

[121]    Janknecht, P., Melo, L., "Online biofilm monitoring". Rev Environ Sci Biotechnol, 269–283, (2003).

[122]    Isse, K., Lesniak, A., Grama, K., Roysam, B., Minervini, M., Demetris, A., "Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis". Am J Transplant, 27–37, (2012).

 

[123]    Stewart, G., Williams, P., "Lux genes and the applications of bacterial bioluminescence". Microbiology, 1289–1300, (1992).

[124]    Bageshwar, D., Pawar, A., Khanvilkar, V., Kadam, V., "Photoacoustic spectroscopy and its applications–A tutorial review". Eurasian J Anal Chem, 187–203, (2010).

[125]    Khan, M., Hong, P., Nada, N., Croue, J., "Does chlorination of seawater reverse osmosis membranes control biofouling?" Water Res, 84–97, (2015).

[126]    Saeki, D., Karkhanechi, H., Matsuura, H., Matsuyama, H., "Effect of operating conditions on biofouling in reverse osmosis membrane processes: Bacterial adhesion, biofilm formation, and permeate flux decrease". Desalination, 74–79, (2016).

[127]    Hassan, I., Ennouri, M., Lafforgue, C., Schmitz, P., Ayadi. A., "Experimental study of membrane fouling during crossflow microfiltration of yeast and bacteria suspensions: towards an analysis at the microscopic level". Membranes (Basel), 44–68, (2013).

[128]    Sim, L. N., Chong, T. H., Taheri, A. H., Sim, S. T. V., Lai, L., Krantz, W. B., Fane, A. G., "A review of fouling indices and monitoring techniques for reverse osmosis". Desalination, 434:169–88, (2018).

[129]    Hong, K., Lee, S., Choi, S., Yu, Y., Hong, S., Moon, J., "Assessment of various membrane fouling indexes under seawater conditions". Desalination, 247–259, (2009).

[130]    Choi, J., Hwang, T., Lee, S., Hong, S., "A systematic approach to determine the fouling index for a RO/NF membrane process". Desalination, 117–127, (2009).

[131]    Anis, S., Hashaikeh, R., Hilal, N., "Reverse osmosis pretreatment technologies and future trends: A comprehensive review". Desalination, 159–195, (2019).

[132]    Kavitha, J., Rajalakshmi, M., Phani, A., Padaki, M., "Pretreatment processes for seawater reverse osmosis desalination systems—A review". J Water Process Eng, 100926, (2019).