حذف بیولوژیکی سیانید: بررسی مسیرهای آنزیمی، ریزاندامگان‌‌ها و عامل‌های عملیاتی مؤثر

نوع مقاله: مقاله مروری

نویسندگان

1 دانشگاه آزاد اسلامی، واحد تهران جنوب

2 موسسه تحقیقات پنبه کشور

چکیده

حضور سیانید در فاضلاب صنایعی مانند واحد کک‌سازی صنایع فولاد، از معضلات زیست‌محیطی و حذف آن از اولویت‌های تصفیه‌خانه‌های فاضلاب صنعتی است. روش‌های فیزیکی و شیمیایی متنوعی برای حذف سیانید وجود دارد اما روش‌های بیولوژیکی به دلیل ارزان‌قیمت بودن و سازگاری با محیط زیست مورد توجه قرار گرفته است. به تازگی ریزاندامگان‌هایی شناخته شده که می‌توانند با کارایی بالا سیانید را حذف کنند؛ مزیت آن‌ها نیاز به زمان کمتر و وجود مسیرهای متنوع و آنزیم‌های شناخته‌شده است. هدف این پژوهش، بررسی اجمالی مسیرهای حذف بیولوژیکی ترکیبات سیانید و شناخت مهم‌ترین عامل‌های عملیاتی در این فرایندها است. اطلاعات ارائه‌شده در این مطالعه به مهندسان شیمی فعال در حوزه محیط زیست و به‌ویژه تصفیه‌خانه‌های فاضلاب‌های صنعتی آلوده به ترکیبات سیانید، کمک می‌کند تا برای حذف بیولوژیکی ترکیبات سیانید، شرایط عملیاتی مناسب را ایجاد کنند.

 

[1]       Mirizadeh, S., Yaghmaei, S., Ghobadi Nejad, Z., “Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM)”. Journal of Environmental Health Science & Engineering 12, 85 (2014).

[2]       Petros, J., Lacy, L., Conway, R., “Hazardous and Industrial Solid Waste Testing: Fourth Symposium”. West Conshohocken, PA: ASTM International (1985).

[3]      استاندارد ملی ایران، شماره ۱۰۵۳، ویژگی‌های فیزیکی و شیمیایی آب آشامیدنی )۱۳۸۸(.

[4]       Razanamahandry, L. C., Karoui, H., Andrianisa, H., Yacouba, H., “Bioremediation of soil and water polluted by cyanide: a review”. African journal of Environmental Science and Technology (vol. 11) (2017).

[5]       Vedula, R. K., Aalal, S., Majumder, C. B., “Bioremoval of cyanide and phenol from industrial wastewater: an update”. Bioremediation Journal 17(4), 278–293 (2013).

 

 

 

[6]        http://www.environment-lab.ir/environmental-stand ards, Table-13 (2017).

[7]        Gupta, N., Balomajumder, C., Agarwal, V. K., “Enzymatic mechanism and biochemistry for cyanide degradation: a review”. Journal of Hazardous Materials 176(1–3), 1–1 (2010).

[8]        Dwivedi, N., Balomajumder, C., Mondal, P., “Application of microorganisms in biodegradation of cyanide from wastewater” (p. 301) (2018).

[9]        Figueira, M. M., Ciminelli, V. S. T., Andrade, M. C. De,  Linardi, V. R., “Cyanide degradation by an Escherichia coli strain”. Canadian Journal of Microbiology 42(5), 519–523 (1996).

[10]      Kunz, D. A., Nagappan, O., Silva-Avalos, J., Delong, G. T., “Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion”. Applied and Environmental Microbiology 58(6), 2022–2029 (1992).

[11]      Kao, C. M., Liu, J. K., lou, H. R., Lin, C. S.,  Chen, S. C., “Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca”. Chemosphere 50(8), 1055–1061 (2003).

[12]      Kaewkannetra, P., Imai, T., Garcia-garcia, F. J.,  Chiu, T. Y., “Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system”. Journal of Hazardous Materials 172(1), 224–228 (2009).

[13]      Mekuto, L., Ntwampe, S. K. O., Jackson, V., “Biodegradation of free cyanide using Bacillus Sp. Consortium dominated by Bacillus Safensis, Lichenformis & Tequilensis strains: a bioprocess supported solely with whey”. Bioremediation & Biodegradation S:18-004, 1-7 (2013).

[14]      Castric, P. A., Strobel, G. A., “Cyanide metabolism by Bacillus megaterium”. The Journal of Biological Chemistry 244: 4089–94 (1969).

[15]      Ibrahim, K. K., Syed, M. A., Shukor, M. Y., Ahmad, S. A., “Biological remediation of cyanide: a review”. Biotropia-the Southeast Asian Journal of Tropical Biology 22(2), 151–163 (2016).

[16]      Khezri, A., Karimi, A., Yazdian, F., Jokar, M., “Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction”. International Journal of Biological Macromolecules 114, 972–978 (2018).

[17]      Skowronski, B., Strobel, G. A., “Cyanide resistance and cyanide utilisation by a strain of Bacillus pumilus”. Canadian Journal of Microbiology 15: 93–8 (1969).

[18]      Frywe, Mills Rl., “Cyanide degradation by an enzyme from Stemphylum loti”. Archives of Biochemistry and Biophysics 161: 468–74 (1972).

[19]      Atkinson, A. “Bacterial cyanide detoxification”. Biotechnology and Bioengineering 17: 457–60 (1975).

[20]      Basheer, S., Kut, Om., Prenosil, Je., Bourne, Jr., “Kinetics of enzymatic degradation of cyanide”. Biotechnology and Bioengineering 39: 629–34 (1992).

[21]      Babu, G., Wolfram, Jh., Chapatwala, Kd., “Conversion of sodium cyanide to carbon dioxide and ammonia by immobilised cells of Pseudomonas putida”. Journal of Industrial Microbiology & Biotechnology 9: 235–38 (1992).

[22]      Suh, Y., Park, Jm., Yang, J., “Biodegradation of cyanide compounds by Pseudomonas fluorescens immobilised on zeolite”. Journal of Enzyme and Microbial Technology 16: 529–33 (1994).

[23]      Shivaraman, N., Parhad, N. M., “Biodegradation of cyanide by Pseudomonas acidovarans and influence of pH and phenol”. Indian Journal of Environmental Health 27: 1–8 (1985).

[24]      Figueira, M. M., Ciminelli, V., Andrade, De, Mc, Linardi, Vr., “Cyanide degradation by an Eschericia coli strain”. Canadian Journal of Microbiology 42: 519–23 (1996).

[25]      Dumestre, A., Chone, T., Portal, J., Berthelin, J., “Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils”. Applied and Environmental Microbiology 63: 2729–34 (1997).

[26]      Barclay, M., Hart, A., Knowles, C. J., Meeussen, J. C. L., Tett, V. A., “Biodegradation of metal cyanides by mixed and pure cultures of fungi”. Journal of Enzyme and Microbial Technology 22: 223–31 (1998)

[27]      White, D. M., Schnabel, W., “Treatment of cyanide waste in a sequencing batch biofilm reactor”. Water Research 32: 254–7 (1998).

[28]      Kowalski, M., Bodzek, M., Bohdziewicz, J., “Biodegradation of phenols and cyanides using membranes with immobilised organisms”. Process Biochemistry 33: 189–97 (1998).

[29]      Chapatwala, K. D., Babu, G. R. V., Vijaya, O. K., Kumar, K. P., Wolfram, J. H., “Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilised cells of Pseudomonas putida”. Journal of Industrial Microbiology & Biotechnology 20: 28–33 (1998).

[30]      Dursun, A. Y, Alik, A. C., Aksu, Z., “Degradation of ferrous (ii) cyanide complex ion by Pseudomonas fluorescens”. Process Biochemistry 34: 901–8 (1999).

[31]      Kaewkannetra, P., Imai, T., Garcia, GFI., Chiu, T. Y., “Cyanide removal from cassava mill wastewater using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system”. Journal of Hazardous Materials 172: 224–8 (2009).

[32]      Huub, J. G., Elisabeth, B., Henry, F., “Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment”. Water Research 34: 2447–54 (1999).

[33]      Patil, Y. B, Paknikar, K. M., “Development of a process for bio detoxification of metal cyanides from wastewaters”. Process Biochemistry 35: 1139–51 (2000).

[34]      Paixao, M. A, Tavares, C. R. G, Bergamasco, R., Bonifacio, A. L. E., Costa, R. T., “Anaerobic digestion from residue of industrial cassava industrialisation with acidogenic and methanogenic physical separation phases”. Applied Biochemistry and Microbiology 84-86: 809–19 (2000).

[35]      Annachhatre, A. P., Amornkaew, A., “Toxicity and degradation of cyanide in batch methanogenesis”. Environmental Technology 21: 135–45 (2000).

[36]      Sorokin, D. Y., Tourova, T. P., Lysenko, A. M., Kuenen, J. G., “Microbial thiocyanate utilisation under highly alkaline conditions”. Applied Biochemistry and Microbiology 67: 528–38 (2001).

[37]      Plessis, D. U., Barnard, P., Muhlbauer, R. M., Naldrett, K., “Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor”. Letters in Applied Microbiology 32: 103–7 (2001).

[38]      Kwon, H., Woo, S., Park, J., “Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants”. Biotechnology Letters 24: 1347–51 (2002).

[39]      Yamasaki, M., Matsushita, Y., Namura, M., Nyunoya, H., Katayama, Y., “Genetic and immunochemical characterization of thiocyanate-degrading bacteria in lakewater”, Applied Biochemistry and Microbiology 68: 942–6 (2002).

[40]      Akcil, A., Karahan, A. G., Ciftci, H., Sagdic, O., “Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.)”. Minerals Engineering 16: 643–9 (2003).

[41]      Ezzi-mufaddal, I., Lynch, J. M., “Biodegradation of cyanide by trichoderma spp. And fusarium spp.”. Enzyme and Microbial Technology 36: 849–54 (2005).

[42]      Campos, M. G., Pereira, P., Roseiro, J. C., “Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and methylobacterium sp. RXM CCMI 908”. Enzyme and Microbial Technology 38: 848–54 (2006).

[43]      Kao, C. M., Liu, Jk., Lou, Hr., Lin, Cs., Chen, Sc., “Biotransformation of cynide to methane and ammonia by Klebsiella oxytoca”. Chemosphere 50: 1055–61 (2003).

[44]      Fatma, G., Hasan, C., Ata, A., “Biodegradation of cyanide containing effluents by Scenedesmus obliquus”. Journal of Hazardous Materials 162: 74–9 (2000).

[45]      Luque-almagro, Y. M., Blasco, R., Huertas, M. J., Martinezluquem., Moreno-viviac., Castillo,F., Rolda, MD., “Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT 5344”. Biochemical Society Transactions 33: 168–9 (2005).

[46]      Potivichayanon, S., Kitleartpornpairoat, R., “Biodegradation of cyanide by novel cyanide degrading bacterium”. World Academy of Science, Engineering and Technology 42: 1362-5 (2010).

[47]      Maegala, N. M., Fridelina, S., Abdullatif, I., “Biodegradation of cyanide by Rhodococcus strains isolated in Malaysia”. International Conference for Food Engineering and Biotechnology 9: 21–5 (2011).

[48]      Maegala, N. M., Fridelina, S., Abdullatif, I., Anthony, E. G., “Cyanide degradation by immobilised cells of Rhodococcus UKMP-5M”. Biologia 67(5): 837–44 (2012).

[49]      Karamba, K. I., Shukor, M. Y., Syed, M. A., Zulkharnain, A., Yasid, N. A., Khalil, K. A., Ahmad, S. A., “Isolation, screening and characterisation of cyanide degrading Serratia marcescens strain aq07”. Journal of Chemistry and Pharmaceutical Sciences 8: 401–6 (2015).

[50]      Ozel, Y. K., Gedikli, S., Aytar, P., Unal, A., Yamaç, M., Ahmet, C., Kolankaya, N., “New fungal biomasses for cyanide biodegradation”. Journal of Bioscience and Bioengineering 110(4), 431–435 (2010).

[51]      Huertas, M. J., Sáez, L. P., Roldán, M. D.,

Luque-almagro, Y. M., Martínez-luque, M., Blascoc, R., Castillo, F., Moreno-vivián, C., Garcia-garcia, I., “Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor, influence of pH". Journal of Hazardous Materials 179, 72–78 (2010).

[52]      Gurbuza, F., Ciftci, H., Akcil, A., Karahan, A. G., “Microbial detoxification of cyanide solutions: a new biotechnological approach using algae”. Hydrometallurgy 72, 167–176 (2004).

[53]      Environmental and health effects of cyanide, International cyanide management code for the gold mining industry, 888 16th Street, NW, Suite 303, Washington, DC 20006, USA.

[54]      Ciminellei, F. M. M., Deandrade, M. C., Linardi, V. R., “Cyanide degradation by an Escherichia coli strain”. Canadian Journal of Microbiology 42, 519–523 (1996).

[55]      Kunz, D. A., Nagappan, O., Silva-avalos, J., Delong, G. T., “Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: Evidence for Multiple Pathways of Metabolic Conversion”. Journal of Applied and Environmental Microbiology 58, 2022–2029 (1992).

[56]      Kao, C. M., Liu, J. K., Lou, H. R., Lin, C. S., Chen, S. C., “Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca”. Chemosphere Journal 50, 1055–1061 (2003).

[57]      Maniyam, M. N., Sjahrir, F., Latif, I. A. “Biodegradation of Cyanide by Rhodococcus strains Isolated in Malaysia”, International Conference on Food Engineering and Biotechnology IPCBEE vol. 9; IACSTI Press: Singapore (2011).

[58]      Dash, R. R., Majumder, C. B., kumar, A., “Treatment of Metal Cyanide Bearing Wastewater by Simultaneous Adsorption and Biodegradation (SAB)”. Journal of Hazardous Materials 152, 387–396 (2008).

[59]      Dash, R. R., Gaur, A., Majumder, C. B., “Removal of Cyanide from Water and Wastewater using Granular Activated Carbon”. Chemical Engineering Journal 146, 408–413 (2009).

 

[60]      Barclay, M., Tett, V. A., Knowles, C. J., “Metabolism and Enzymology of Cyanide/Metallo cyanide Biodegradation by Fusarium solani under Neutral and Acidic Condition”. Journal of Enzyme and Microbial Technology 23, 321–330 (1998).

[61]      Dash, R. R., Balomajumder, C., Kumar, A., “Cyanide Removal by Combined Adsorption and Biodegradation Process”. Iranian Journal of Environmental Health Science & Engineering 3,

91–96 (2006).

[62]      Fallon, R. D., Cooper, D. A., Speece, R., Henson, M., “Anaerobic biodegradation of Cyanide under Methogenic Conditions”. Journal of Applied and Environmental Microbiology 57, 1656–1662 (1991).

[63]      Barclay, M., Tett, V. A., Knowles, C. J., “Metabolism and Enzymology of Cyanide/Metallocyanide Biodegradation by Fusarium solani under Neutral and Acidic Condition”. Journal of Enzyme and Microbial Technology 23, 321-330 (1998).