حذف بیولوژیکی سیانید: بررسی مسیرهای آنزیمی، ریزاندامگان‌‌ها و عامل‌های عملیاتی مؤثر

نوع مقاله : مقاله مروری

نویسندگان

1 دانشگاه آزاد اسلامی، واحد تهران جنوب

2 موسسه تحقیقات پنبه کشور

چکیده

حضور سیانید در فاضلاب صنایعی مانند واحد کک‌سازی صنایع فولاد، از معضلات زیست‌محیطی و حذف آن از اولویت‌های تصفیه‌خانه‌های فاضلاب صنعتی است. روش‌های فیزیکی و شیمیایی متنوعی برای حذف سیانید وجود دارد اما روش‌های بیولوژیکی به دلیل ارزان‌قیمت بودن و سازگاری با محیط زیست مورد توجه قرار گرفته است. به تازگی ریزاندامگان‌هایی شناخته شده که می‌توانند با کارایی بالا سیانید را حذف کنند؛ مزیت آن‌ها نیاز به زمان کمتر و وجود مسیرهای متنوع و آنزیم‌های شناخته‌شده است. هدف این پژوهش، بررسی اجمالی مسیرهای حذف بیولوژیکی ترکیبات سیانید و شناخت مهم‌ترین عامل‌های عملیاتی در این فرایندها است. اطلاعات ارائه‌شده در این مطالعه به مهندسان شیمی فعال در حوزه محیط زیست و به‌ویژه تصفیه‌خانه‌های فاضلاب‌های صنعتی آلوده به ترکیبات سیانید، کمک می‌کند تا برای حذف بیولوژیکی ترکیبات سیانید، شرایط عملیاتی مناسب را ایجاد کنند.

عنوان مقاله [English]

The Cyanide Bio-Removal: Enzymatic Pathways Microorganisms and Affecting Operational Parameters

نویسندگان [English]

  • A. Khezri 1
  • L. Vafajoo 1
  • M. Jokar 2
1 Islamic Azad University, Tehran South Branch
2 Cotton Research Institute of Iran, Agricultural Research, Education and Extention Organization (AREEO)
چکیده [English]

Cyanides uptake is one of the priorities of the wastewater treatment plants of the industry, because of its high toxicity and harmful effects on the environment. There are numerous physical and chemical methods for Cyanide removal, some of which are not cost-effective or create some hazardous side products. Thereby, utilizing the bio-removal processes as the cheap and bio-friendly method are taken into consideration. The Cyanide bio-removal proved to be the most effective method which possesses the possible removal pathways with the well-known enzymes. The present research aimed to investigate the Cyanids bio-removal pathways and to illustrate the most affecting operational parameters on this process. The information expressed in this article might be useful for some chemical engineers who work in industrial wastewater treatment facilities to assess the optimum operating conditions for Cyanids bio-uptake.

کلیدواژه‌ها [English]

  • Cyanide
  • Biological uptake
  • Microorganism
  • Enzyme
  • Removal Pathways

 

[1]       Mirizadeh, S., Yaghmaei, S., Ghobadi Nejad, Z., “Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM)”. Journal of Environmental Health Science & Engineering 12, 85 (2014).
[2]       Petros, J., Lacy, L., Conway, R., “Hazardous and Industrial Solid Waste Testing: Fourth Symposium”. West Conshohocken, PA: ASTM International (1985).
[3]      استاندارد ملی ایران، شماره ۱۰۵۳، ویژگی‌های فیزیکی و شیمیایی آب آشامیدنی )۱۳۸۸(.
[4]       Razanamahandry, L. C., Karoui, H., Andrianisa, H., Yacouba, H., “Bioremediation of soil and water polluted by cyanide: a review”. African journal of Environmental Science and Technology (vol. 11) (2017).
[5]       Vedula, R. K., Aalal, S., Majumder, C. B., “Bioremoval of cyanide and phenol from industrial wastewater: an update”. Bioremediation Journal 17(4), 278–293 (2013).
 
 
 
[6]        http://www.environment-lab.ir/environmental-stand ards, Table-13 (2017).
[7]        Gupta, N., Balomajumder, C., Agarwal, V. K., “Enzymatic mechanism and biochemistry for cyanide degradation: a review”. Journal of Hazardous Materials 176(1–3), 1–1 (2010).
[8]        Dwivedi, N., Balomajumder, C., Mondal, P., “Application of microorganisms in biodegradation of cyanide from wastewater” (p. 301) (2018).
[9]        Figueira, M. M., Ciminelli, V. S. T., Andrade, M. C. De,  Linardi, V. R., “Cyanide degradation by an Escherichia coli strain”. Canadian Journal of Microbiology 42(5), 519–523 (1996).
[10]      Kunz, D. A., Nagappan, O., Silva-Avalos, J., Delong, G. T., “Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion”. Applied and Environmental Microbiology 58(6), 2022–2029 (1992).
[11]      Kao, C. M., Liu, J. K., lou, H. R., Lin, C. S.,  Chen, S. C., “Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca”. Chemosphere 50(8), 1055–1061 (2003).
[12]      Kaewkannetra, P., Imai, T., Garcia-garcia, F. J.,  Chiu, T. Y., “Cyanide removal from cassava mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system”. Journal of Hazardous Materials 172(1), 224–228 (2009).
[13]      Mekuto, L., Ntwampe, S. K. O., Jackson, V., “Biodegradation of free cyanide using Bacillus Sp. Consortium dominated by Bacillus Safensis, Lichenformis & Tequilensis strains: a bioprocess supported solely with whey”. Bioremediation & Biodegradation S:18-004, 1-7 (2013).
[14]      Castric, P. A., Strobel, G. A., “Cyanide metabolism by Bacillus megaterium”. The Journal of Biological Chemistry 244: 4089–94 (1969).
[15]      Ibrahim, K. K., Syed, M. A., Shukor, M. Y., Ahmad, S. A., “Biological remediation of cyanide: a review”. Biotropia-the Southeast Asian Journal of Tropical Biology 22(2), 151–163 (2016).
[16]      Khezri, A., Karimi, A., Yazdian, F., Jokar, M., “Molecular dynamic of curcumin/chitosan interaction using a computational molecular approach: emphasis on biofilm reduction”. International Journal of Biological Macromolecules 114, 972–978 (2018).
[17]      Skowronski, B., Strobel, G. A., “Cyanide resistance and cyanide utilisation by a strain of Bacillus pumilus”. Canadian Journal of Microbiology 15: 93–8 (1969).
[18]      Frywe, Mills Rl., “Cyanide degradation by an enzyme from Stemphylum loti”. Archives of Biochemistry and Biophysics 161: 468–74 (1972).
[19]      Atkinson, A. “Bacterial cyanide detoxification”. Biotechnology and Bioengineering 17: 457–60 (1975).
[20]      Basheer, S., Kut, Om., Prenosil, Je., Bourne, Jr., “Kinetics of enzymatic degradation of cyanide”. Biotechnology and Bioengineering 39: 629–34 (1992).
[21]      Babu, G., Wolfram, Jh., Chapatwala, Kd., “Conversion of sodium cyanide to carbon dioxide and ammonia by immobilised cells of Pseudomonas putida”. Journal of Industrial Microbiology & Biotechnology 9: 235–38 (1992).
[22]      Suh, Y., Park, Jm., Yang, J., “Biodegradation of cyanide compounds by Pseudomonas fluorescens immobilised on zeolite”. Journal of Enzyme and Microbial Technology 16: 529–33 (1994).
[23]      Shivaraman, N., Parhad, N. M., “Biodegradation of cyanide by Pseudomonas acidovarans and influence of pH and phenol”. Indian Journal of Environmental Health 27: 1–8 (1985).
[24]      Figueira, M. M., Ciminelli, V., Andrade, De, Mc, Linardi, Vr., “Cyanide degradation by an Eschericia coli strain”. Canadian Journal of Microbiology 42: 519–23 (1996).
[25]      Dumestre, A., Chone, T., Portal, J., Berthelin, J., “Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils”. Applied and Environmental Microbiology 63: 2729–34 (1997).
[26]      Barclay, M., Hart, A., Knowles, C. J., Meeussen, J. C. L., Tett, V. A., “Biodegradation of metal cyanides by mixed and pure cultures of fungi”. Journal of Enzyme and Microbial Technology 22: 223–31 (1998)
[27]      White, D. M., Schnabel, W., “Treatment of cyanide waste in a sequencing batch biofilm reactor”. Water Research 32: 254–7 (1998).
[28]      Kowalski, M., Bodzek, M., Bohdziewicz, J., “Biodegradation of phenols and cyanides using membranes with immobilised organisms”. Process Biochemistry 33: 189–97 (1998).
[29]      Chapatwala, K. D., Babu, G. R. V., Vijaya, O. K., Kumar, K. P., Wolfram, J. H., “Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilised cells of Pseudomonas putida”. Journal of Industrial Microbiology & Biotechnology 20: 28–33 (1998).
[30]      Dursun, A. Y, Alik, A. C., Aksu, Z., “Degradation of ferrous (ii) cyanide complex ion by Pseudomonas fluorescens”. Process Biochemistry 34: 901–8 (1999).
[31]      Kaewkannetra, P., Imai, T., Garcia, GFI., Chiu, T. Y., “Cyanide removal from cassava mill wastewater using Azotobacter vinelandii TISTR 1094 with mixed microorganisms in activated sludge treatment system”. Journal of Hazardous Materials 172: 224–8 (2009).
[32]      Huub, J. G., Elisabeth, B., Henry, F., “Cyanide toxicity and cyanide degradation in anaerobic wastewater treatment”. Water Research 34: 2447–54 (1999).
[33]      Patil, Y. B, Paknikar, K. M., “Development of a process for bio detoxification of metal cyanides from wastewaters”. Process Biochemistry 35: 1139–51 (2000).
[34]      Paixao, M. A, Tavares, C. R. G, Bergamasco, R., Bonifacio, A. L. E., Costa, R. T., “Anaerobic digestion from residue of industrial cassava industrialisation with acidogenic and methanogenic physical separation phases”. Applied Biochemistry and Microbiology 84-86: 809–19 (2000).
[35]      Annachhatre, A. P., Amornkaew, A., “Toxicity and degradation of cyanide in batch methanogenesis”. Environmental Technology 21: 135–45 (2000).
[36]      Sorokin, D. Y., Tourova, T. P., Lysenko, A. M., Kuenen, J. G., “Microbial thiocyanate utilisation under highly alkaline conditions”. Applied Biochemistry and Microbiology 67: 528–38 (2001).
[37]      Plessis, D. U., Barnard, P., Muhlbauer, R. M., Naldrett, K., “Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor”. Letters in Applied Microbiology 32: 103–7 (2001).
[38]      Kwon, H., Woo, S., Park, J., “Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants”. Biotechnology Letters 24: 1347–51 (2002).
[39]      Yamasaki, M., Matsushita, Y., Namura, M., Nyunoya, H., Katayama, Y., “Genetic and immunochemical characterization of thiocyanate-degrading bacteria in lakewater”, Applied Biochemistry and Microbiology 68: 942–6 (2002).
[40]      Akcil, A., Karahan, A. G., Ciftci, H., Sagdic, O., “Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.)”. Minerals Engineering 16: 643–9 (2003).
[41]      Ezzi-mufaddal, I., Lynch, J. M., “Biodegradation of cyanide by trichoderma spp. And fusarium spp.”. Enzyme and Microbial Technology 36: 849–54 (2005).
[42]      Campos, M. G., Pereira, P., Roseiro, J. C., “Packed-bed reactor for the integrated biodegradation of cyanide and formamide by immobilised Fusarium oxysporum CCMI 876 and methylobacterium sp. RXM CCMI 908”. Enzyme and Microbial Technology 38: 848–54 (2006).
[43]      Kao, C. M., Liu, Jk., Lou, Hr., Lin, Cs., Chen, Sc., “Biotransformation of cynide to methane and ammonia by Klebsiella oxytoca”. Chemosphere 50: 1055–61 (2003).
[44]      Fatma, G., Hasan, C., Ata, A., “Biodegradation of cyanide containing effluents by Scenedesmus obliquus”. Journal of Hazardous Materials 162: 74–9 (2000).
[45]      Luque-almagro, Y. M., Blasco, R., Huertas, M. J., Martinezluquem., Moreno-viviac., Castillo,F., Rolda, MD., “Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT 5344”. Biochemical Society Transactions 33: 168–9 (2005).
[46]      Potivichayanon, S., Kitleartpornpairoat, R., “Biodegradation of cyanide by novel cyanide degrading bacterium”. World Academy of Science, Engineering and Technology 42: 1362-5 (2010).
[47]      Maegala, N. M., Fridelina, S., Abdullatif, I., “Biodegradation of cyanide by Rhodococcus strains isolated in Malaysia”. International Conference for Food Engineering and Biotechnology 9: 21–5 (2011).
[48]      Maegala, N. M., Fridelina, S., Abdullatif, I., Anthony, E. G., “Cyanide degradation by immobilised cells of Rhodococcus UKMP-5M”. Biologia 67(5): 837–44 (2012).
[49]      Karamba, K. I., Shukor, M. Y., Syed, M. A., Zulkharnain, A., Yasid, N. A., Khalil, K. A., Ahmad, S. A., “Isolation, screening and characterisation of cyanide degrading Serratia marcescens strain aq07”. Journal of Chemistry and Pharmaceutical Sciences 8: 401–6 (2015).
[50]      Ozel, Y. K., Gedikli, S., Aytar, P., Unal, A., Yamaç, M., Ahmet, C., Kolankaya, N., “New fungal biomasses for cyanide biodegradation”. Journal of Bioscience and Bioengineering 110(4), 431–435 (2010).
[51]      Huertas, M. J., Sáez, L. P., Roldán, M. D.,
Luque-almagro, Y. M., Martínez-luque, M., Blascoc, R., Castillo, F., Moreno-vivián, C., Garcia-garcia, I., “Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor, influence of pH". Journal of Hazardous Materials 179, 72–78 (2010).
[52]      Gurbuza, F., Ciftci, H., Akcil, A., Karahan, A. G., “Microbial detoxification of cyanide solutions: a new biotechnological approach using algae”. Hydrometallurgy 72, 167–176 (2004).
[53]      Environmental and health effects of cyanide, International cyanide management code for the gold mining industry, 888 16th Street, NW, Suite 303, Washington, DC 20006, USA.
[54]      Ciminellei, F. M. M., Deandrade, M. C., Linardi, V. R., “Cyanide degradation by an Escherichia coli strain”. Canadian Journal of Microbiology 42, 519–523 (1996).
[55]      Kunz, D. A., Nagappan, O., Silva-avalos, J., Delong, G. T., “Utilization of cyanide as a nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: Evidence for Multiple Pathways of Metabolic Conversion”. Journal of Applied and Environmental Microbiology 58, 2022–2029 (1992).
[56]      Kao, C. M., Liu, J. K., Lou, H. R., Lin, C. S., Chen, S. C., “Biotransformation of cyanide to methane and ammonia by Klebsiella oxytoca”. Chemosphere Journal 50, 1055–1061 (2003).
[57]      Maniyam, M. N., Sjahrir, F., Latif, I. A. “Biodegradation of Cyanide by Rhodococcus strains Isolated in Malaysia”, International Conference on Food Engineering and Biotechnology IPCBEE vol. 9; IACSTI Press: Singapore (2011).
[58]      Dash, R. R., Majumder, C. B., kumar, A., “Treatment of Metal Cyanide Bearing Wastewater by Simultaneous Adsorption and Biodegradation (SAB)”. Journal of Hazardous Materials 152, 387–396 (2008).
[59]      Dash, R. R., Gaur, A., Majumder, C. B., “Removal of Cyanide from Water and Wastewater using Granular Activated Carbon”. Chemical Engineering Journal 146, 408–413 (2009).
 
[60]      Barclay, M., Tett, V. A., Knowles, C. J., “Metabolism and Enzymology of Cyanide/Metallo cyanide Biodegradation by Fusarium solani under Neutral and Acidic Condition”. Journal of Enzyme and Microbial Technology 23, 321–330 (1998).
[61]      Dash, R. R., Balomajumder, C., Kumar, A., “Cyanide Removal by Combined Adsorption and Biodegradation Process”. Iranian Journal of Environmental Health Science & Engineering 3,
91–96 (2006).
[62]      Fallon, R. D., Cooper, D. A., Speece, R., Henson, M., “Anaerobic biodegradation of Cyanide under Methogenic Conditions”. Journal of Applied and Environmental Microbiology 57, 1656–1662 (1991).
[63]      Barclay, M., Tett, V. A., Knowles, C. J., “Metabolism and Enzymology of Cyanide/Metallocyanide Biodegradation by Fusarium solani under Neutral and Acidic Condition”. Journal of Enzyme and Microbial Technology 23, 321-330 (1998).